
TrainVis 2
Design Document

Bernhard Mecl

October 3, 2012

1 Introduction

TrainVis [MPP07] facilitates the visualization of railway timetables using several
different types of representations. Since it is directly based on the low-level toolkits
prefuse [Hee04] and TimeVis [Wei07] much functionality including the data input
format is custom to the application and its practical usefulness is mostly limited
by missing query and filter operations. VisuExplore [RMA+10], on the other hand,
already provides an abstraction over those toolkits but is only able to process data
representable in a simple tabular form. The goal of the TrainVis 2 project therefore
is threefold:

• Generalize VisuExplore to support arbitrary datasets.

• Re-implement the functionality available in TrainVis.

• Enable interaction with the data by way of query and filter operations.

2 Generalizing VisuExplore

2.1 Nomenclature

Since VisuExplore was developed in the medical domain the classes encapsulat-
ing the single data table read from a file or a database inherit from the abstract
class Patient. This class was replaced by the interface Dataset in a mostly cosmetic
refactoring operation.

2.2 Customizing the creation of visualizations

Even though VisuExplore internally worked with Patient objects for historical rea-
sons, many time-oriented datasets can be and actually are already represented us-
ing the application’s simple tabular data structure where a certain numeric or logic

1



Figure 1: Creation of a visualization object (original)

value is assigned to a parameter at a given timestamp. The main obstacle to the
ability of processing arbitrary datasets lies in the tight coupling between this data
structure and the creation of visualization objects. In the original design a visual-
ization is created by the main singleton VisuExplore object which passes it the one
and only data table a Patient provides (Figure 1).

The new design shifts the responsibility for creating visualization objects from
the main to the settings class (Figure 2). This not only enables the settings object
to customize the creation of a visualization but also to pass it several arbitrary data
structures provided by the dataset at once. In order to remain backward compatible
with existing functionality, the default implementation of the new buildVisualiza-
tion method invokes the original one in the same way as the VisuExplore object did
before.

2.3 Customizing the creation of standard dialogs

VisuExplore provides a so-called data panel which displays the single data struc-
ture in its original tabular form. To adapt this feature to arbitrary datasets, the
creation of the DataPanel object was relocated to the TimeVisualiation class. This
way a visualization object may decide on its own how to best represent the available
data in textual, tabular, or any alternative form for that matter.

The NewFacetDialog class was retrofit to implement the INewFacetDialog in-
terface so that datasets may provide their own implementation of this dialog to
present visualizations An object implementing this interface is returned by the Vi-

2



Figure 2: Creation of a visualization object (revised)

sualDataset class which handles all visual aspects of a dataset.
A new toolbar icon launches a dialog which enables the user to interact with the

data of the currently selected visualization by way of query and filter operations.

2.4 Multiple document interface

In order to be able to view and compare multiple sets of visualizations at once, the
single-window design of VisuExplore using a single timescale has been replaced
with an MDI (multiple document interface) where every internal frame has its
own independently configurable timescale. Frames may be added, renamed, and
removed using the menu bar and their configuration including their respective lo-
cation and size gets persisted when saving the session.

2.5 Miscellaneous

As VisuExplore’s visual padding of at least a month’s time is not appropriate for
datasets of arbitrary granularity, the dataset itself may now provide a suitable
value.

3 Visualizing Railway Timetables

TrainVis 2 re-implements and partly improves the four kinds of visualizations
present in TrainVis (see Figure 3). Included are a timetable bar chart with the
possibility of switching between absolute and relative timelines and a Marey chart
which can be interacted with using the visualization’s query dialog.

3



Figure 3: Visualizations supported by TrainVis 2

4



Figure 4: Using the data panel with the timetable bar chart

The textual timetable representation implemented in TrainVis was replaced by
an interactive data panel which resembles the look of an actual timetable with
a stations table on the left and a trains table on the right hand side. When a
train table column is selected, the corresponding visual item is highlighted in the
visualization (see Figures 4 and 5).

3.1 Timetable bar chart

In the timetable bar chart each train is represented by a bar spanning from its
departure at the first stop to its arrival at the last stop. The following settings are
available (see Figure 6):

Title Sets the title of the visualization which is displayed as a watermark.

Direction Filters the trains based on their direction of travel.

Sort order Sorts the trains based on their direction of travel or displays them in the
order they are specified in the input file.

5



Figure 5: Using the data panel with the Marey chart

6



Figure 6: Timetable bar chart settings dialog

Relative timescale Activates the relative timescale feature. The departure time at
the first stop of a each train is mapped to 00:00 so that travel times can easily
be compared.

Color choosers Dynamically created combo boxes allow for the assignment of a
color to each train category present in the dataset.

3.2 Marey chart

Basically, a Marey chart [Mar75] is a time-distance diagram with the stations
placed on the vertical axis proportional to their actual distance and time plotted
on the horizontal axis. The following settings are available (see Figure 7):

Title Sets the title of the visualization which is displayed as a watermark.

Line width Sets the width of the lines representing the trains.

Point size Sets the size of the points representing the stops at a station.

Color choosers Dynamically created combo boxes allow for the assignment of a
color to each train category present in the dataset.

Running timetable queries on the visualized data is possible using the chart’s
query dialog which is accessible via a toolbar icon. The following options are avail-
able (see Figure 8):

From The desired departure station.

To The desired arrival station.

Date The desired travel date. Only dates in the current dataset’s timetable period
are selectable. In case the date field is left empty, every day in the timetable
period is searched for matching connections.

7



Figure 7: Marey chart settings dialog

Time The desired departure or arrival date depending on the selected option

Search Starts the timetable query. Matching trains are displayed in the results
panel. Just like with the timetable data panel, columns selected in the results
panel are highlighted in the visualization (see Figure 9).

Reset Resets all entries to their default values and clears the results panel.

3.3 Input format

TrainVis 2 uses railML [NHSK04], an XML-based file format facilitating data ex-
change between heterogeneous railway applications, as its input format. The cur-
rent railML specification contains subschemas for infrastructure, timetables, and
rolling stock. TrainVis 2 does, however, only support a minimal subset expressive
enough to specify the aspects relevant to the application, i. e., stations and their
respective position along a track as well as trains and their category, operating pe-
riod, and stops. Generally, if one aspect may be modeled in several redundant ways,
only support for the machine-readable format is implemented.

A minimal railML example with a single train travelling from Station 1 to Sta-
tion 2 is given in Listing 1. The infrastructure section uses ocp elements to define
both stations and crossSection elements to assign them an absolute position along
a track in meters. The timetable section starts with defining the timetable period
and the available train operating periods. While both entities may include redun-
dant human-readable definitions, only the startDate and endDate attributes of the
timetablePeriod element as well as the bitMask attribute of the operatingPeriod ele-
ment are evaluated. Next comes the definition of the available train categories. The
rest of the timetable section deals with the available train parts and their composi-
tion. Each part is assigned a certain category and operating period as well as a list
of stops. While every train may theoretically consist of several parts with different
attributes, TrainVis 2 does only consider the first one and does not support special
operating procedures like train coupling and sharing either.

8



Figure 8: Marey chart query dialog

9



Figure 9: Querying the Marey chart

10



<?xml version="1.0" encoding="utf-8"?>
<railml version="2.1" [...]>

<infrastructure id="[...]" name="[...]">
<tracks>

<track id="[...]">
<trackTopology>

[...]
<crossSections>

<crossSection id="[...]" ocpRef="ocp_St1" pos="0"/>
<crossSection id="[...]" ocpRef="ocp_St2" pos="100000"/>

</crossSections>
</trackTopology>

</track>
</tracks>

<operationControlPoints>
<ocp id="ocp_St1" abbrevation="St1" name="Station 1"/>
<ocp id="ocp_St2" abbrevation="St2" name="Station 2"/>

</operationControlPoints>
</infrastructure>

<timetable id="[...]">
<timetablePeriods>

<timetablePeriod id="[...]" startDate="2011-12-11" endDate="2012-12-08"/>
</timetablePeriods>

<operatingPeriods>
<operatingPeriod id="operatingPeriod_A" name="A" bitMask="0111110[...]"/>

</operatingPeriods>

<categories>
<category id="category_R" name="R" description="regional train"/>

</categories>

<trainParts>
<trainPart id="trainPart_R4711_1" categoryRef="category_R">

<operatingPeriodRef ref="operatingPeriod_A"/>
<ocpsTT>

<ocpTT ocpRef="ocp_St1">
<times scope="scheduled" departure="06:00:00"/>

</ocpTT>
<ocpTT ocpRef="ocp_St2">

<times scope="scheduled" arrival="07:00:00"/>
</ocpTT>

</ocpsTT>
</trainPart>

</trainParts>

<trains>
<train id="train_R4711" trainNumber="R4711" type="commercial">

<trainPartSequence sequence="1">
<trainPartRef ref="trainPart_R4711_1"/>

</trainPartSequence>
</train>

</trains>
</timetable>

</railml>

Listing 1: A minimal railML example

11



Figure 10: TrainVis 2 model classes

Figure 11: Creation of a timetable object

3.4 Involved classes

The subset of relevant information extracted from the railML file is straightfor-
wardly modeled by aptly named classes (Figure 10). The prefuse data structures
used by the two new visualizations TimetableBarChart and MareyChart are cre-
ated by the TimetableDataset object which is backed by a Timetable object originat-
ing from a RailMLReader instance (Figure 11).

Like all visualizations provided by VisuExplore, both visualizations added in the
course of the TrainVis 2 project consist of a respective Visualization, SettingsDia-
log, and Settings class where the latter acts as a bridge between the former two
and manages the persistable attributes. It may hold references to objects like the
currently active Direction or SortOrder object used in the process of filtering and
querying the timetable dataset. These objects are created according to the user’s
preferences by the SettingsDialog and ultimately processed by prefuse Actions in
the Visualization object.

12



References

[Hee04] Jeffrey Heer. prefuse: a software framework for interactive informa-
tion visualization. Master’s thesis, University of California, Berkeley,
December 2004.

[Mar75] Étienne-Jules Marey. La méthode graphique dans les sciences expéri-
mentales (Suite). In Physiologie Expérimentale. G. Masson, 1875.

[MPP07] Markus Martin, Hansjörg Pripamer, and Georg Prohaska. TrainVis.
http://ieg.ifs.tuwien.ac.at/projects/trainVis/, 2007.

[NHSK04] Andrew Nash, Daniel Hürlimann, Jörg Schütte, and Vasco Paul Krauss.
RailML – a standard data interface for railroad applications. In Com-
puters in Railways IX, pages 233–240, Dresden, Germany, May 2004.

[RMA+10] Alexander Rind, Silvia Miksch, Wolfgang Aigner, Thomas Turic, and
Margit Pohl. VisuExplore: Gaining new medical insights from visual ex-
ploration. In Proceedings of the 1st International Workshop on Interactive
Systems in Healthcare (WISH 2010), pages 149–152, Atlanta, Georgia,
United States, April 2010.

[Wei07] Peter Weishapl. TimeVis: Visualizing temporal data using prefuse.
Bachelor’s thesis, Vienna University of Technology, March 2007.

13

http://ieg.ifs.tuwien.ac.at/projects/trainVis/

	Introduction
	Generalizing VisuExplore
	Nomenclature
	Customizing the creation of visualizations
	Customizing the creation of standard dialogs
	Multiple document interface
	Miscellaneous

	Visualizing Railway Timetables
	Timetable bar chart
	Marey chart
	Input format
	Involved classes


