
A State-of-the-Art Report on
Docking Frameworks

BACHELORARBEIT

zur Erlangung des akademischen Grades

Bachelor of Science

im Rahmen des Studiums

Medieninformatik und Visual Computing

eingereicht von

Benjamin Kowatsch
Matrikelnummer 0828124

an der
Fakultät für Informatik der Technischen Universität Wien

Betreuung: Dipl.Ing. Bilal Alsallakh, Dr.techn.

Wien, 16.02.2015
(Unterschrift Benjamin

Kowatsch)
(Unterschrift Betreuung)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Abstract

Modern user interfaces make extensive use of multiple windows and views that enable users to
explore different pieces of information and solve different tasks. Efficient usage of coordinated
and multiple views requires a window management framework that allows users to interactively
arrange their views within the available screen-space. A variety of software libraries have been
developed to support window management in various software environments, both for desk-
top and web-based interfaces. These libraries often feature docking frameworks that support
window management using drag and drop. Examining all of these libraries is a tedious task for
software developers, who need to select an appropriate library for their purpose without the need
for extensive tests and experimental implementations. This thesis helps developers in exploring,
comparing and selecting docking frameworks by functionalities. After introducing the reader to
theoretical foundations, an overview of state-of-the-art frameworks is given, along with a dis-
cussion of their features and technical details of their implementations. Additionally, I provide
reference implementations of a multiple view user interface using selected frameworks, to test
and demonstrate their features and allow developers to extend these implementations. Finally,
I conclude this work with a comparison of the presented docking frameworks regarding their
features and capabilities.

i

Contents

1 Introduction 1

2 Related work and theoretical foundations 3
2.1 Window and Display Space Management . 3
2.2 Multitasking with multiple views and docking 6
2.3 Visualization with multiple views . 7
2.4 Interactive data exploration with multiple views 10

3 Method 11

4 Overview of web-based frameworks 12
4.1 Dock Spawn . 12
4.2 JQuery UI Layout . 14
4.3 wcDocker . 16
4.4 jQWidgets . 19
4.5 Others . 21

5 Overview of Java-based frameworks 23
5.1 MyDoggy . 23
5.2 DockingFrames . 26
5.3 VLDocking . 28
5.4 Eclipse RCP . 30
5.5 Netbeans RCP . 33

6 Comparison of web-based frameworks 36
6.1 Overview . 36
6.2 Feature Analysis . 36
6.3 Criteria . 36
6.4 Dock Spawn . 37
6.5 jQuery UI Layout . 38
6.6 jQWidgets . 38
6.7 wcDocker . 39
6.8 Discussion . 39

ii

7 Comparison of Java-based frameworks 40
7.1 Overview . 40
7.2 Feature Analysis . 40
7.3 Criteria . 41
7.4 MyDoggy . 41
7.5 DockingFrames . 42
7.6 VLDocking . 42
7.7 Eclipse RCP . 43
7.8 Netbeans RCP . 43
7.9 Discussion . 44

8 Conclusion 45

A Supplementaries 47

Bibliography 48

iii

CHAPTER 1
Introduction

User interfaces in modern operating systems and software programs make extensive use of mul-
tiple windows and views that allow users to explore different pieces of information and solve
different tasks. Such multiple views are particularly important for information visualization sys-
tems to support analyzing complex and multi-faceted data sets. The views can be tiled, resized,
repositioned, focused, opened, closed and docked to another view. Docking means that views
can be snapped to each other, either via drag’n’drop or using another interaction method. This
is especially important in applications that use multiple windows to allow the user to customize
the interface. Figure 1.1 gives an example for docking functionality illustrating only one way
how docking can be performed. In this example the user drags a view, for example “Files”, and
drops it to the up arrow key. After that, the “Files” view will be snapped above the “Properties”
and “Code” view. Of course there are other ways of achieving such functionality. For example,
a view could be directly dropped on the border line of another view, subsequently snapping both
views to each other.

Currently there are many docking frameworks available, either commercial or open- source.
At the moment, no comprehensive survey has been conducted on the features and functionality
of these frameworks. Therefore it is hard to choose a suited framework for certain requirements -
and to compare the strengths and weaknesses of these frameworks for a specific task. This thesis
gives a state-of-the-art report on docking frameworks. It should serve as a solid orientation for
readers who are searching for a scientific comparison and overview of docking with Java- and
web-technologies.

1

Figure 1.1: Docking functionality with arrows indicating to which view a dragged window will
be snapped.

The following list gives an overview of the contributions of this thesis:

• theoretical foundations as well as an overview of researched frameworks, see chapter 2

• prototype implementation of selected frameworks, see chapters 4 and 5

• comparison of the implemented frameworks, see chapters 6 and 7

Based on this thesis, it should be possible to determine whether the use of a specific framework
fits the specified requirements of a software project. Additionally, the thesis provides theory
to understand how window management works and which techniques exist to properly handle
multiple views in order to assist the user with his/her task(s). Furthermore, the thesis moves the
emphasis to Information Visualization with both the practical and the theoretical part.Therefore,
theory will be concluded in a manner to be relevant to Information Visualization and the proto-
type will use Information Visualization for demonstration purposes.

2

CHAPTER 2
Related work and theoretical

foundations

Before getting into practical details of docking frameworks, it is important to understand which
principles back up the design decisions of user interfaces that actually use docking. In the fol-
lowing sections window and display space management, interaction with multiple views, multi-
tasking with multiple views, and visualization with multiple views will be covered.

2.1 Window and Display Space Management

Today’s most common operating systems make use of window managers. As [Myers, 1988]
points out, window managers are software packages that help the user to separate contexts on
one or more computer screens. The main goal is to help users to keep an overview while han-
dling multiple activities. This is mainly achieved through the higher level interface and the basic
features of window managers, the desktop. The desktop acts as a metaphor, using a computer is
like doing operations on a physical desk. Additionally, window managers provide a variety of
basic features for interactions that allow rearranging the user interface. These features include
windows in general, popup menus, icons, tiled or overlapping windows and setting the focus on
a certain window, to mention just a few. [Myers, 1988] discusses and defines the most important
features. Overlapping allows windows to be placed on top of each other, either completely or
only partially. In opposite to overlapping, tiling places windows next to each other, therefore
not allowing windows to overlap. Additionally, window managers often make use of icons. It
allows replacing an application with a small icon when the application is not running. Another
important feature is the management of the window focus, referring to the window that is at-
tached to the keyboard and receives input. Lastly, most window managers make use of some
kind of pointer, the most common being a pointer controlled by an input device, for example
a computer mouse. This pointer specifies locations on the screen and can therefore be used to
interact with the elements of the specified location.

3

Window and display space management can be done in several ways from a user point of
view as [Hutchings and Stasko, 2004] found out via a user study. They investigated different
window managers that let users build up their own window arrangement. For example sys-
tems that allow the user to arrange sets of windows, each set belonging to a specific task, and
switching between these sets. Another example allows peeling and rotating of windows as in
Microsoft Windows when ALT+TAB key combination is pressed. [Hutchings and Stasko, 2004]
interviewed different users on their regular workspaces. They found out that users can be put
into three categories while handling multiple windows.

The first category is called Maximizers. Users of this category tend to maximize every win-
dow (Figure 2.1).Switching windows in this category happens mostly via the keyboard sequence
ALT+TAB.

Figure 2.1: Desktop screenshot: Maximizer category

Near Maximizers is the second category. This category uses one smaller window which
they frequently use besides their maximized windows (Figure 2.2) or they leave a small area of
desktop icons uncovered. Near Maximizers switch their windows with mouse clicks.

4

Figure 2.2: Desktop screenshot: Near Maximizer category

The last category is called Careful Coordinators. These users have many windows visible
simultaneously and no window is maximized (Figure 2.3). Every window has an important
function and users arrange their windows based on their functions.

Figure 2.3: Desktop screenshot: Careful Coordinator on two monitors

Additionally, [Hutchings and Stasko, 2004] analyzed in detail common practices that have
been established by users regarding window management and how these practices are influenced
by the environment. For example, some users were very sensitive about their privacy and did not
want E-Mails or Instant-Messages to be shown on the screens while not actively working with
them. Therefore they were using several techniques for hiding these windows. Furthermore,
users were not strictly tiling their windows, instead they overlayed windows over each other to
just see the important information they needed. They did this to make full use of their screen-
size. Another interesting practice was the use of empty space that actually was not empty. Some
users left empty space on their screens where they placed files or icons for quickly launching ap-
plications. Windows were also used as reminders, especially by people that often got interrupted

5

while working and had to abandon their task. Some of the users even used multiple reminder
windows. Input devices often define how users interact with windows and screens. For example,
one user had two monitors but it was very annoying to traverse from one screen to the other
because of the limited space for moving the mouse. This caused the user to nearly never actively
use the second monitor.

2.2 Multitasking with multiple views and docking

When working with computers, users do not necessarily rely just on one document or one win-
dow for completing a single task, as [Shibata and Omura, 2012] point out. Therefore users in
different work areas usually perform multitasking when working with computers. 2.1 demon-
strated how window managers support users while multitasking. [Shibata and Omura, 2012]
present a framework which allows docking of windows. Its purpose is to manage multiple win-
dows and support multitasking. To achieve the design goal, the framework provides four main
features. First, it allows constructing of and switching between workspaces, so that the user does
not have to remember which windows belong to which workspace, like in conventional window
managers. To keep the user interface for switching tasks between workspaces, [Shibata and
Omura, 2012] decided to use docking as the preferred interaction method. Docking eliminates
the need to define group or hierarchical relations between the windows, as they can simply be
docked to each other in a workspace context. The second main feature is the possibility to save
and restore workspaces. Instead of setting up the whole environment with every startup of the
computer, users just have to use one action. Furthermore, [Shibata and Omura, 2012] state that it
is important to make use of the fact that many people already have larger display space and mul-
tiple monitors available. Therefore, they avoid overlapping and use tiling of windows instead.
Tiling further supports the design decision to use docking windows as an interaction technique.
Lastly, the Docking Window Framework (DWF) they propose supports multiple window op-
erations that affect all docked windows. For example enlarging one window makes the other
docked windows smaller. Evaluating their framework with a user study, [Shibata and Omura,
2012] found out that users were able to finish their tasks faster by about 23 %, primarily because
of the fact that users were able to set up a window layout suited for their tasks more quickly.

6

Figure 2.4: Task completion time in window arrangement tasks both in a traditional system and
in Docking Window Framework (DWF) [Shibata and Omura, 2012].

This practical example of a window manager system shows how docking can enhance and
make the workplace of users more efficient.

2.3 Visualization with multiple views

As pointed out in the previous chapters, multiple views are very useful in different areas and
for different tasks. The reference implementations of selected docking frameworks, provided as
part of this thesis,l use visualizations for demonstration purposes. Therefore it is important to
show which rules apply to the usage of visualizations in this context. [Wang Baldonado et al.,
2000] introduced eight guidelines for using multiple views in Information Visualization which
are derived by their own experience and by analyzing existing systems in that area. Additional
input was given at a workshop 1 on information exploration environments. [Wang Baldonado
et al., 2000] split the guidelines in two groups. The first group discusses if the use of multiple
views is appropriate while the second group discusses how a system with multiple views should
be designed. The remainder of this section provides a summary of these rules.

Rule of Diversity

Use multiple views when there is a diversity of attributes, models, user profiles, levels of abstrac-
tion or genres.

[Wang Baldonado et al., 2000] present diversity as one of the most important reasons to use

1CHI ’98 Workshop on Innovation and Evaluation in Information Exploration Interfaces

7

multiple view systems. A popular example is if different levels of detail are present and multiple
views serve as kind of progression through the dataset.

Rule of Complementarity

Use multiple views when different views bring out correlations and/or disparities.

This rule proposes the use of multiple windows if it helps to understand complex relationships
among different data sets or to find hidden relations between views.

Rule of Decomposition

Partition complex data into multiple views to create manageable chunks and to provide insight
into the interaction among different dimensions.

Decomposition helps the user to comprehend otherwise cognitively overwhelming content. The
rule of decomposition can be compared with the principle of “divide and conquer”. [Wang Bal-
donado et al., 2000] suggest that this rule could simply be implemented by letting the user see
one dataset after another. A more sophisticated way combines the rule of complementarity with
the rule of decomposition to give insight into multiple dimensions, thus making it easier to com-
pare datasets.

Rule of Parsimony

Use multiple views minimally.

Generally, multiple views demand a steeper learning curve and increased cognitive attention
from the user. Additionally, multiple views require more screen space, so they should only be
used if there is a strong reason to do so.

Rule of Space/Time Resource Optimization

Balance the spatial and temporal costs of presenting multiple views with the spatial and tempo-
ral benefits of using the views.

It is crucial for the designer to know how much space and time is available to the user, and
how much time and space is consumed for each of the views to be displayed. Different factors
have to be considered, for example download times for images in multiple views or if it is even
possible for the user to see all images at once because of limited display space.

Rule of Self-Evidence

Use perceptual cues to make relationships among multiple views more apparent to the user.

Because of the difficulties in recognizing and processing of relationships in multiple views,

8

it is important to give proper cues to shift the recognization of these relationships from cogni-
tion to perception. Examples for commonly used cues are highlighting of information, spatial
arrangement of views or coupled interaction of views.

Rule of Consistency

Make the interface for multiple views consistent and make the states of multiple views consistent.

In general, multiple views should provide consistency especially regarding system state and
interface affordances. As an example of system consistency, displaying a region in one view
should result in displaying the same region in another related view. Making interface affor-
dances consistent makes it easier for the user to learn how to handle a multiple view system.

Rule of Attention Management

Use perceptual techniques to focus the user’s attention on the right view at the right time.

Systems that follow this design guideline try to draw the attention of the user to the right views at
the right time. Therefore perceptual techniques like animation, sounds, highlighting and move-
ment are used similar to the techniques used in the rule of self-evidence.

Figure 2.5: Design guidelines for multiple views ([Wang Baldonado et al., 2000])

9

2.4 Interactive data exploration with multiple views

[Roberts, 2007] surveyed coordinated and multiple views in exploratory visualization and men-
tions different interaction techniques. In general, interaction includes filtering of data and what
is displayed, changing the mapping of information, navigation in the information like zooming,
and changing the placement of windows on the screen. [Roberts, 2007] classifies interaction
into two categories. The first category is called indirect manipulation and makes use of dynamic
queries like sliders, buttons and menus. As an example, sliders are mentioned which make it
possible to have an easy way to express what is visualized and how the viewed data is con-
strained. The second category is direct manipulation. Techniques in this category allow the user
to directly filter elements using the visualization itself. The general approach is to use brushing,
where for example selecting and highlighting parts of the visualization or data in one view leads
to the same highlighting in another view. Additional techniques are manipulators and widgets
directly associated to an object to change its properties.

Figure 2.6: Example for direct manipulation with brushing.

10

CHAPTER 3
Method

The following chapters 4, 5, 6 and 7 contain the results of my research regarding the differ-
ent frameworks. I found most of these frameworks with the help of developer forums such
as www.stackoverflow.com, my own Google search and with the support of my advisor Bilal
Alsallakh.

The following keywords were used for my search: docking, docking frameworks, window
management tools, drag and drop frameworks, Java docking frameworks, web docking frame-
works, JavaScript docking frameworks, window management docking frameworks. This search
has revealed ten frameworks that are based on web technology and fourteen frameworks based
on Java technology.

The frameworks were then filtered by their last update time, so that only frameworks where
the last update happened after 2010 were relevant. Furthermore, I excluded frameworks whose
download count (if available, for example on Google Code or GitHub) was relatively low. As
you will notice, most of the presented frameworks are open-source software. I did not exclude
commercial frameworks per se but as testing possibilities with these frameworks were limited,
only a couple of them are listed. As one can see, I checked on Java and “native“ web-based
frameworks (HTML, CSS, JavaScript) only and my thesis does not include analysis of frame-
works based on Microsoft Silverlight, Flash or similar technologies.

11

CHAPTER 4
Overview of web-based frameworks

This chapter presents different web based frameworks that can be used for docking. A com-
prehensive overview will be given on available features of these frameworks, in addition to a
reference implementation of these features. Browser compatibility is tested for each frame-
work, along with other problems encountered in the tests. The browsers used for testing were
Internet Explorer 11.0.9600.17280, Firefox 32.0.3, Opera 24.0.1558.64 and Google Chrome
37.0.2062.124.

4.1 Dock Spawn

General

DockSpawn [Code Respawn, 2012] is a framework that was specifically developed for docking
and its related features. It provides functionality for docking, floating dialogs and tabbed panels.
This framework is open source software released under the MIT License 1. Included in the
software package of the framework is a demo which demonstrates how all provided features can
be implemented. Furthermore, DockSpawn has a very extensive documentation on its web page.

Features

Docking:

Docking in DockSpawn works with predefined boxes that are oriented like a compass around a
center-box. These predefined boxes are located in the center position of the screen. Additionally,
four boxes appear on the border of the screen which are again oriented like a compass. Dropping
the dragged panel in a box that is located around the center box results in docking the dragged
panel and adjusting either the width or height to fit to the center panel. Dropping the dragged
panels in the boxes on the border of the screen results in the dragged panel docked to the center

1http://opensource.org/licenses/MIT

12

http://opensource.org/licenses/MIT

panel again but taking up the full screen width or height. If the dragged panel is dropped in the
center box, then it becomes a tabbed panel. Figure 4.1 is a screenshot of the docking process in
the reference implementation of DockSpawn. Every view can be resized in every direction and
the docked views are resized accordingly.

Figure 4.1: Floating view and docking boxes in Dock Spawn.

Floating Dialogs:

DockSpawn supports dialogs that float anywhere on the screen, but not outside of the browser.
A panel has to be dragged onto the preferred position on the screen to make it float. Floating
dialogs can be docked again using the docking boxes.

Tabbed Panels:

As mentioned, dropping a panel in the center box makes it a tabbed panel. A tabbed panel can
be docked to another panel again by clicking the tab and then dragging and dropping it to the
desired location.

Style:

DockSpawn ships with a predefined CCS file for styling. Changing this style can be done by
examining and changing the corresponding CSS classes. In order to retrieve these classes, de-
veloper tools like firebug and its inspect tools can be very helpful.

13

Save/Load Functionality:

DockSpawn provides functionality for saving and restoring layouts of multiple views. However,
my testing as well as Dock Spawn’s issues list on GitHub 1 have revealed that this feature does
not work at all. All entries in the issues list as well as my own testing have raised the problem
of an undefined variable in Dock Spawn’s source code for save/load functionality.

Problems

Browser compatibilty:

All features, except save/load functionality that does not work at all, are compatible with all
browsers, but there are problems regarding the implementation, as described in the next para-
graph.

Documentation:

Dock Spawn offers a detailed API documentation on its webpage 2, as well as a short code
snippet to set up some views. Additionally, a demo can be found which demonstrates all features.

Implementation:

The reference implementation of Dock Spawn required 63 lines of JavaScript code and 21 lines
of HTML code to achieve the desired functionality, including a workaround for resizing the
scatterplot when resizing a panel. This workaround was necessary because content of one panel
overlapped into panels that were located in the south of the screen. Content that would overlap
from left to right was correctly clipped even when resizing panels. Another bug occured when
using the save/load functionality of DockSpawn. This issue is raised by several other users on
GitHub because of a seemingly undefined variable in Dock Spawn’s source code, as mentioned
above in the features overview.

4.2 JQuery UI Layout

General

The reference implementation is based on a plugin called jQuery UI Layout [Balliano, Dalman,
2014]. This plugin has many features and allows to implement docking views but unfortunately
without the possibility to drag-and-drop docked views to other regions. Nevertheless, there are
possibilites like sliding, hiding and collapsing which can work as a replacement for the drag-
and-drop functionality. Additionally, if drag-and-drop functionality is not required for a project,
jQuery UI Layout can be the better choice because of its wealth of UI features. The plugin is
licensed under the GPL 1 and MIT 2 licenses and is an open-source project. jQuery UI Layout

1https://github.com/coderespawn/dock-spawn/issues
2http://www.dockspawn.com/
1http://www.gnu.org/copyleft/gpl.html
2http://opensource.org/licenses/MIT

14

https://github.com/coderespawn/dock-spawn/issues
http://www.dockspawn.com/
http://www.gnu.org/copyleft/gpl.html
http://opensource.org/licenses/MIT

also provides extensive documenation on its webpage and demos on many different aspects of
the plugin. jQueryUI Layout depends on two libraries, jQuery and jQuery UI.

Features

Docking:

jQuery UI Layout provides five regions, north, south, east and west. Every region can be nested
to create sophisticated layouts with multiple views. The framework does not support drag and
drop of views and subsequently snapping them to each other. However, the layout itself is highly
customizable and there are many features like collapsable, hidable or slidable panels which can
be more important features for specific projects than other features.

Style:

jQuery UI Layout comes with very little predefined styling. The only elements that are notably
styled out-of-the-box are borders, splitters and resizers. As the elements can be easily accessed
with auto-generated CSS classes or with custom CSS classes, it is easy to find the corresponding
classes to apply CSS styling. Additionally, there is a default layout which can be activated by
setting the option applyDefaultStyles to true.

Other features:

As mentioned above, jQuery UI Layout provides functionality for collapsable, hidable and sl-
idable panels. Additionally, panels can be resized and decorated with a collection of options 3

for each panel. It is also possible to define callback functions for events triggered by showing,
hiding, opening, closing and resizing panels. Lastly, the framework supports keyboard shortcuts
(called “hotkeys “) as well as headers and footers for every region (and every nested region).

Problems

Browser compatibilty:

Testing the above-mentioned features did not lead to any errors in either of the tested browsers.

Documentation:

The most helpful resource for developing with jQuery UI Layout was the official documentation
3. Aside from that, there are also plenty of demos with different layouts from where the code
can be inspected with an inspector tool.

3http://layout.jquery-dev.com/documentation.cfm

15

http://layout.jquery-dev.com/documentation.cfm

Implementation:

The reference implementation has 42 lines of JavaScript code and 28 lines of html code. Imple-
menting all the features did not lead to any major problems except that jQuery UI Layout has its
own (yet simple) syntax which one has to learn in order to make proper use of the framework.

4.3 wcDocker

General

wcDocker [Houde, 2014] is a framework that is specifically designed for docking. Its features
are tailored towards multiple views, like scrolling panels, tabbed panels, saving of multiple
views layout and usual interaction techniques like drag and drop, resizing and floating. From
its webpage on GitHub 1 one can navigate to a demo 2 where all the features are demonstrated.
The framework is open source and licensed under the MIT License 3. The API documentation of
wcDocker is also located on the webpage. As the framework was undergoing active development
during the time of writing this thesis, it is recommended to examine the features of the demo 2

too.

Features

Docking:

The docking feature of wcDocker,in my opinion, has a more intuitive drag-and-drop approach
than for example Dock Spawn when arranging multiple docked views. That means that there
are no boxes, like in DockSpawn, that define whether the view is positioned to north, south, east
or west. Instead, a view sticks to another, depending on the location where it is dropped in the
other view, either in the north, south, east or west.

1https://github.com/WebCabin/wcDocker/wiki/wcDocker
2http://docker.webcabin.org/
3http://opensource.org/licenses/MIT

16

https://github.com/WebCabin/wcDocker/wiki/wcDocker
http://docker.webcabin.org/
http://opensource.org/licenses/MIT

Figure 4.2: Docking the Console view to the left/west of the Scatterplot view.

Figure 4.2 shows an example of the docking process in wcDocker. The dragged view be-
comes transparent and a grey overlay appears to identify the new location of the view. If the
overlay reaches a location where it can be positioned to another view, it becomes darker. Resiz-
ing one view also affects all other surrounding views.

Context Menu:

wcDocker provides a context menu via right click with standard options and the possibility to
add custom options. Standard options include adding a registered panel, detaching a panel to
make it float, closing a panel and flashing it for visual recognition.

Floating Dialogs:

Panels can either be dropped to a location where they do not snap to other views or detached
via the context menu to make them float. It is not possible to let the dialog float outside of the
browser window.

Tabbed Panels:

Each panel created by the framework has one tab. Other views can be dragged to the title bar to
have multiple tabbed panels in one view or they can have multiple tabs initially. These tabs can
also be interchanged between multiple views.

17

Style:

wcDocker provides three themes out-of-the-box that mostly change the coloring of backgrounds.
All styles can be changed by modifying the corresponding CSS classes.

Save/Load Functionality:

The Save/Load feature either stores or reloads a previously saved layout. As either case needs
just one line of code, this is a quick and easy way to enable the user to save different layouts for
different tasks. As the layout is saved in JSON format, handling different layouts can be done by
simply saving the JSON data to a variable and enabling access to them via an interface option.

Other features:

wcDocker offers the possibility to add custom buttons to panels that appear in the upper-right
area. Additionally panel buttons and tabs can have their own icon image. The framework also
has an event system in place to react on panel change events.

Problems

Browser compatibilty:

All features described above were tested in the major browsers mentioned. As this framework
is regularly updated, I also tested the already existing and additional features on the demo page
regularly during writing this thesis 1. Compatibility is one of the major features outlined by the
developer of this framework.

Documentation:

On the GitHub page 2 you can find basic installation and feature guides. To actually implement
all the features I found it most efficient to consult the API documentation (also linked on GitHub)
and inspect the demo code 1.

Implementation:

The reference implementation required 119 lines of JavaScript code and 1 line of HTML code.
Implementing the features of the framework mainly involves registering a panel to a container
DIV element and consequently defining settings and additional features as well as the positioning
of the panels.

1http://docker.webcabin.org/
2https://github.com/WebCabin/wcDocker

18

http://docker.webcabin.org/
https://github.com/WebCabin/wcDocker

4.4 jQWidgets

General

jqWidgets [jQWidgets, 2014] is a docking framework that offers a wide range of view-management
features besides docking. On its webpage one can view all features and get a first overview of
the functionality in form of a demo for every feature as well as the corresponding source code
to implement it. Additionally, this first webpage also provides an API documentation for all
methods, variables and classes of the features. If jQWidgets is used for non-commercial use,
one can use it under the Creative Commons License 1, otherwise a license has to be purchased
2. jQWidgets also depends on jQuery with the minimum version 1.11.0.

Features

Docking:

The docking feature of jQWidgets does not work with south/east/west/north regions where views
can be docked to, like for example Dock Spawn (see section 4.1. Instead, the existing views
define regions (respectively anchors) that determine where views can be snapped to. As an
example Figure, 4.3 describes the effect of moving the console view above the scatterplot view
in the reference implementation.

Figure 4.3: Moving the console view above the scatterplot view with jQWidgets

In Figure 4.3 moving a view above either the values, scatterplot or output view moves them
downwards. This is essentially what docking in jQWidgets does with all other views: it moves
them vertically, depending on where the other views are placed. It is not possible to dock or tab
the views inside of another view, like in Dock Spawn or wcDocker.

1http://creativecommons.org
2currently available for $199-$899, depending on the license type

19

http://creativecommons.org

Floating Dialogs:

Floating Dialogs can be achieved by switching the mode of the view to floating. The floating
mode lets one place the view independently of the docking regions and other views. There are
two other modes: The docking mode prohibits placing views anywhere else than in the docking
regions. The default mode is a mix of floating and docking: If a view is dragged to a position
on the page where no docking region is defined, it floats, and otherwise it is docked into the
docking region. Floating dialogs cannot be placed outside of the browser window.

Tabbed Panels:

This feature is specifically mentioned, as there is no possibility to dock a view inside of another.
Every view can have multiple tabbed panels. As the tab feature is not part of the docking feature,
it has to be imported.

Style:

The possibilities for styling the components of this framework are more advanced, compared to
all other web-based frameworks. There are several themes provided on the webpage of jQWid-
gets and aside from that one can either adjust these existing themes or create new ones with the
theme builder 1. As an example, one can import a predefined theme and change all CSS settings
of specific components like the header, the content area and so on. No other framework allows
changing its CSS settings without actually writing CSS code.

Other features:

As jQWidgets has a wide range of 49 widgets, it also brings a lot of other features aside from
docking (like tabs mentioned one section earlier). Analyzing all these features is beyond the
scope of this thesis. However, there are some features that can be specifically useful for docking.
These features include save/restore functionality of the current layout, enabling and disabling of
docking, collapsable views as well as an event handler for docking events like moving a view.

Problems

Browser compatibilty:

All the above described features were tested and did not yield any error in either of the browsers.

Documentation:

While jQWidgets provides a detailed API documentation, it also has demos with their respective
source code available at their webpage 1. These demos also provide a link to the respective API
reference and compared to other frameworks, this all-in-one documentation is really time saving
as you have everything at one place to look up.

1http://www.jqwidgets.com/themebuilder/
1http://www.jqwidgets.com/jquery-widgets-demo/

20

http://www.jqwidgets.com/themebuilder/
http://www.jqwidgets.com/jquery-widgets-demo/

Implementation:

The reference implementation of jQWidgets required 80 lines of JavaScript code and 45 lines
of HTML code. I had no major problems implementing all the desired functionality. Only one
issue that can be confusing was the fact that it is possible to flag a view as resizable, however
while the view is in docked mode it can not be resized at all. The only way to resize a view is to
make it float, but as soon as it is docked into the docking region, it gets resized to the size of the
docking region.

4.5 Others

The following list is an overview of other web-based frameworks that offer (sometimes limited)
docking features but are not implemented in the reference implementation.

Dojo Toolkit [The
Dojo Foundation,
2014]

• based on JavaScript/jQuery/HTML5

• built in 2D graphics API with charting components like Bar,
Line, Pie, Scatter, etc.

• special API for data that allows drag and drop, filter, pagina-
tion, etc. on tables respectively data grids

• resizing, tabbing, multiple views, drag and drop, special
docking functionality withl dojox API

Sencha ExtJS [Sen-
cha, 2014] • based on JavaScript/HTML5

• commercial license, but also open-source license if creating
an open source application

• over 150 additional widgets

• resizing, docking, multiple views

Telerik Kendo UI
[Telerik, 2014] • based on JavaScript/jQuery/HTML5

• commercial license with the option for an open-source license
but with reduced number of widgets

• over 70 additional widgets

21

EclipseRAP [Eclipse
Foundation, 2014a] • based on JavaScript/jQuery/HTML5

• open source

• similar to EclipseRCP [Eclipse Foundation, 2014b] (API of
Eclipse IDE Interface) but for web technologies

• very sophisticated

• no specialized docking feature

22

CHAPTER 5
Overview of Java-based frameworks

This chapter presents different frameworks for Java. Using the Java Virtual Machine for exe-
cution, these frameworks run cross-platform. For the reference implementation I used the Java
Platform 8u25 (JDK as well as JRE). The computer system in use was an Intel Core i5 CPU @
2.67 GHz with 4 GB RAM and Windows 7 SP1.

5.1 MyDoggy

General

MyDoggy [de Caro, 2010] is mainly designed for the needs of docking in a Java environment
but can also be seen as a window management framework for secondary windows as its features
are not strictly restricted to docking functionalities. It is licensed under the GNU Lesser General
Public License 1 and can therefore be regarded as open-source software. MyDoggy is based on
Swing. Downloading MyDoggy from its official webpage 2 provides one with all necessary JAR
archives to make use of the framework as well as a tutorial set which introduces the user to how
MyDoggy works. Following the documentation outlined on the webpage can also give you good
insight of how to use MyDoggy. MyDoggy is the oldest framework as the last update happened
in December 2010.

Features

Docking:

MyDoggy’s docking feature evaluates the position of a view depending on where it is actually
placed on the Java frame. Highlighting where a view will be placed upon dropping works with

1http://www.gnu.org/copyleft/gpl.html
2http://mydoggy.sourceforge.net/

23

http://www.gnu.org/copyleft/gpl.html
http://mydoggy.sourceforge.net/

visual feedback in form of transparent regions. Figure 5.1 gives an example of the docking
functionality.

Figure 5.1: Clicking the scatterplot tab and dragging it to the left of the console view. Result of
this operation is described in Figure 5.2

Figure 5.2: The result of the dragging (and subsequently) dropping operation from Figure 5.1

There are some rules to docking in MyDoggy which were not readily clear to me at first
glance. Tool windows, in Figure 5.1 the left and right views (values and valuetable), can just
be docked to other tool windows, whereas “normal” views, like the scatterplot or console view,
can just be docked to other “normal” views. If highlighting takes up the whole view, like for

24

example the whole console view in Figure 5.2, then these two views grow together to one view
with two tabs.

Floating Dialogs:

All views can be made floating. Tool windows can directly be dragged onto “normal” views and
are then floating. “Normal” views have to be detached via the context menu to become floating
windows.

Tabbed Panels:

“Normal” views as well as tool windows can be tabbed just to the same window type as docking.
Additionally, there is a context menu for each tab that also changes, depending on the view type.

Different modes for UI behaviour:

When setting up the “normal” views one can choose between different window modes. The
main effect of these modes is to make views either be separated but docked to each other (Multi-
splitContent Mode), tabbed (TabbedContentMode) or floating (DesktopContentMode) at initial-
ization.

Groups:

Tool windows can be grouped up, so if a tool window is opened, than all other tool windows that
belong to the same group open up, too.

Problems

Documentation:

The documentation on the webpage describes single features like ToolWindow, ContentMan-
ager and ResourceManager in a very rudimentary way. Unfortunately there is no detailed API
documentation.

Implementation:

A tutorial, which is included in the software package of the framework, compensates for the lack
of a proper API documentation, and - following some basic examples in the tutorial - one can
become familiar with the API of MyDoggy.

25

5.2 DockingFrames

General

DockingFrames [Sigg, 2014] is an open-source framework that is dedicated for docking features.
It is based on Swing and licensed under the LGPL 2.1 1. To use DockingFrames, the common
and core library provided in the download section of the framework’s webpage 1 has to be
included in the project where it is to be used.

Features

Docking:

First of all, DockingFrames has a very intuitive preview feature when dragging and dropping a
view to see where the view will be placed. As will be mentioned later in in this section, Dock-
ingFrames offers different themes which also change the behaviour and design of this docking
preview but it works well in either theme. Aside from that, docking works like in most other
frameworks, by dragging and dropping a view to another view. Then the preview feature high-
lights where the view is placed relatively to the view being hovered with the mouse, and adapts
the other view(s) immediately while dragging the view. Figures 5.3 and 5.4 show the docking
process including the preview function.

Figure 5.3: Initial layout created with DockingFrames.

1https://www.gnu.org/licenses/lgpl-2.1.html
1http://dock.javaforge.com/download.html

26

https://www.gnu.org/licenses/lgpl-2.1.html
http://dock.javaforge.com/download.html

Figure 5.4: Dragging the scatterplot view above the “Valuechart“ view triggers the preview
function and arranges all views in the way they will look if the view is dropped at this location.

Floating Dialogs:

As soon as a view is moved outside of the main application window it becomes floating. Views
can also be set floating programmatically.

Tabbed Panels:

Tabbed panels are also possible and can be activated, like in most other frameworks, program-
matically or during runtime by dragging and dropping one view into another view.

Themes:

Four different and easy to change themes distinguish DockingFrames from the other frameworks
when it comes to customization. Figure 5.5 shows how the different themes look like.

One can also change the color schemes of the different themes. Combined with different
look-and-feel options offered by Swing, this enables very special and distinctive designs for
styling different views.

27

(a) Smooth theme (b) Flat theme

(c) Bubble theme (d) Eclipse theme

Figure 5.5: Themes in DockingFrames.

Problems

Documentation:

On the webpage of the DockingFrames project 2 various forms of online resources can be found.
The API documentation as well as guides to set up a project with DockingFrames (which also
goes into the detail of the framework architecture) and code examples can be found here. Also
the Google Code repository of DockingFrames 3 provides a wide range of examples.

Implementation:

Implementing the demo for the prototype was not that hard but it can be demanding when starting
to learn how the framework works and diving into the more advanced features like customizing
the so-called DockStation, which handles options for the look and feel. The author of the frame-
work explains the complexity with being the only fulltime developer on the project, backwards
compatibility and flexibility of the framework 4.

5.3 VLDocking

General

VLDocking [Chamontin, 2013] is an open source framework dedicated for docking needs and
is licensed as LGPL 1. It is one of the older projects as the last update happened in June 2013.

Features

Docking:

Docking works similar to most other frameworks. Dragging and dropping a view triggers a
highlighting function that displays if the view is positioned left, right, up or down, depending
on which region is highlighted in the other window. If the highlighting covers the whole view,
then the view will be tabbed. Figure 5.6 and 5.7 show dragging and dropping of a view and the
highlighting function.

2http://dock.javaforge.com/doc.html
3https://code.google.com/p/docking-frames/source/browse/
4http://dock.javaforge.com/help.html
1https://www.gnu.org/licenses/lgpl.html

28

http://dock.javaforge.com/doc.html
https://code.google.com/p/docking-frames/source/browse/
http://dock.javaforge.com/help.html
https://www.gnu.org/licenses/lgpl.html

Figure 5.6: Layout created with VLDocking.

Figure 5.7: Dragging the scatterplot view to the left of the valuetable view triggers left high-
lighting and telling the user that the view will be placed to the left of the valuetable’s view.

29

Floating Dialogs:

With VLDocking views cannot be made floating through interacting with the windows. Other
frameworks require dragging a view out of the main application window, this does not work
with VLDocking. However, there is the possibility to set views floating programmatically and
therefore one could make the currently focused view floating through a menu option.

Tabbed Panels:

Tabbed panels are also possible and can be activated, like in most other frameworks, program-
matically or during runtime by dragging and dropping one view into another view.

Themes:

Like DockingFrames, VLDocking offers different themes that mainly change the layout of space
between views. This space can be decorated with shadows, dots or a standard blank space.

Problems

Documentation:

The webpage of VLDocking 1 provides a step-by-step tutorial for all features and provides code
examples as well as figures for demonstration. Other frameworks often provide demo versions
where it is possible to launch a working example, VLDocking does not offer such examples.

Implementation:

I had no major problems while implementing basic docking features of VLDocking. Especially
laying out multiple views can be done very quickly and requires few lines of code. The only
issue that I consider a limitation is the lack of proper floating windows by default. As mentioned
above, a window can be made floating only programmatically.

5.4 Eclipse RCP

General

Eclipse [Eclipse Foundation, 2014b] enables developers to reuse its libraries and API for creat-
ing user interfaces. According to the documentation 2 it is designed to serve as an open-tools
platform and offers the minimalistic set of plugins that are necessary to create Rich Client Plat-
forms (RCPs). This platform does not only feature a docking framework but a whole set of user
interface elements as well as an Update Manager, Text-Editor, Cheat Sheets for guiding users,
Resource Management, Console view and many other features. It is also highly modular and
the plugin architecture allows flexible and specialized applications. To set up an Eclipse RCP

1https://code.google.com/p/vldocking/
2http://wiki.eclipse.org/Rich_Client_Platform/FAQ

30

https://code.google.com/p/vldocking/
http://wiki.eclipse.org/Rich_Client_Platform/FAQ

application one has to install the Eclipse plug-in development environment through the Eclipse
IDE and afterwards create a new plug-in project with the enabled option of creating a rich client
application.

Features

Docking:

Docking with Eclipse RCP is straightforward. If one view is dragged over another view and
consequently dropped there, the display area of the other view is split in half and shares the
display space with the dropped view. Figures 5.8 and 5.9 show the process of docking in Eclipse
RCP.

Figure 5.8: Initial layout of views with Eclipse RCP

31

Figure 5.9: Dropping the valuechart view in the valuetable view

Floating Dialogs:

Floating Dialogs are also supported. Views can be set floating programmatically or by dragging
a view outside of the application window. A view can also be reattached inside the application
window.

Tabbed Panels:

Eclipse RCP also offers the possibility for tabbed panels. Views can be tabbed by dropping one
view in the tab area of another view. Note that this default behaviour seems to be unique to
Eclipse RCP (and Netbeans RCP, see section 5.5), as most other frameworks tab one view if
another view is dropped on top of it (this would result in docking views in Eclipse RCP and
Netbeans RCP).

Perspectives:

Perspectives are the way how the user can organise views on the screen. Views always exist in
perspectives. Multiple perspectives with different views can be defined for different use cases
within one application. Perspectives can be programmatically pre-defined or the user creates
a layout of views and saves it as a custom perspective. A perspective can also be reset to its
original layout to roll back layout changes made by the user.

32

Problems

Documentation:

There are many online resources available for Eclipse RCP. The following page http://
wiki.eclipse.org/index.php/Rich_Client_Platform is highly recommended:
It provides tutorials, examples, links to other resources as well as UI guidelines and further
resources.

Implementation:

Implementing the demo for the prototype was quite easy, as Eclipse provides several templates
that help understand how rich client applications are built. Also perspectives allow very sophis-
ticated layouts with just a few lines of code, so the developer can focus on the actual features of
his or her application without investing too much time in setting up the user interface.

5.5 Netbeans RCP

General

Like Eclipse, Netbeans offers its libraries and API for creating user interfaces to the developer
as an open tools platform. Netbeans RCP [Netbeans RCP, 2014] has a similar architecture
to Eclipse RCP based on plug-in and aims to be very modular. Also the feature list of both
frameworks is nearly equal. The main differences between Eclipse RCP and Netbeans RCP are:

• Netbeans RCP is based on Swing, while Eclipse RCP is based on SWT

• different look-and-feel

• currently no perspectives for Netbeans RCP as in Eclipse RCP

• Netbeans RCP has many default menu options when creating an application

• Netbeans IDE provides built-in ways to create components (for example view) of rich
client application through a GUI

Features

Docking:

Docking is similar to Eclipse RCP. If one view is dragged over another view and consequently
dropped there, the display area of the other view is split in half and shares the display space with
the dropped view. While dragging, Netbeans RCP shows a minimized transparent version of the
dragged view. Figures 5.10 and 5.11 show the process of docking in Netbeans RCP.

33

http://wiki.eclipse.org/index.php/Rich_Client_Platform
http://wiki.eclipse.org/index.php/Rich_Client_Platform

Figure 5.10: Inital layout of views with Netbeans RCP

Figure 5.11: Dropping the valuechart view in the valuetable view

Floating Dialogs:

As soon as a view leaves the main application window and is dropped there, it becomes floating.

Tabbed Panels:

Panels can be tabbed by dragging one view into the tab area of another view. The user can decide
on which position the new tab will be placed. If placed to the right, then the view will be the

34

new right tab of the nearest tab and so on.

Menus:

Netbeans RCP provides default menu functionality when setting up a new rich client application.
This includes a whole menu tab for managing views, a tools tab where you can set keymaps,
appearance, look and feel and other useful options, a view menu tab with the functionality for
setting up a toolbar with functions like undo or redo and a file menu tab with save, print and exit
commands.

Problems

Documentation:

Netbeans provides very solid resources for its RCP framework, like tutorials and examples
(https://netbeans.org/features/platform/index.html) as well as a complete
API documentation.

Implementation:

Setting up an application based on Netbeans RCP is straightforward, most notably because of
the possibility to create user interfaces interactively using the mouse. Adding a view to an
application for example just requires two clicks. Like Eclipse RCP, this helps developers a lot to
focus on the main features of their application.

35

https://netbeans.org/features/platform/index.html

CHAPTER 6
Comparison of web-based frameworks

6.1 Overview

Chapter 4 presented different web-based frameworks. In this chapter I compare these frame-
works to each other. The comparison is based on a feature matrix to identify strengths and
limitations in the range of features a framework provides, as well as several criteria like perfor-
mance or lines of code and a list of advantages and disadvantages for every framework.

6.2 Feature Analysis

First I want to give an overview on the different features of each framework. This will be done
with a feature matrix, where each column represents a framework and each row a feature. Note
that the matrix is divided in two groups via a line in bold print. The group above the line includes
features that are directly related to docking, whereas the group below the line represents features
of general usage. Also keep in mind that some frameworks have other features, either specialized
and more general, which are not included in this matrix, so if you are interested in further details,
refer to chapter 4.

6.3 Criteria

The following comparisons are split up in quantifiable criteria and pros/cons for each frame-
work. Quantifiable criteria include number of features, both docking as well as more general
features (based on feature matrix), Lines of Code to achieve the functionality which is provided
by the prototype implementation and performance measurement in milliseconds for executing
the framework specific JavaScript code. My3 test system for the performance measurement
has the following specifications: Intel Core i5 @ 2.67 GHz, 4 GB RAM, Win 7 SP1 64 Bit.
Lines of Code include the function calls for the visualisations as well as the table of values and
some calculations for site measurements like width and height. As these non-docking related

36

DockSpawn wcDocker jQWidgets jQuery UI Layout Eclipse RAP
Splitter + + - + +

Tabs + + + + +
Floating Windows + + + - +

Resizing + + + + +
Collapsible Views - - + + +

Docking + + + - -
Save/Load Layout buggy + + + +
Multiple Themes - + + + +

Table 6.1: Feature matrix for web-based frameworks.

lines of code are roughly the same for each framework, they are included in these lines of code
comparison.

6.4 Dock Spawn

Quantity Criteria Overview
Features(docking) 5
Features(general) 1 (buggy)
Lines of Code 63 lines of JavaScript, 10 lines of HTML

code
Performance 43ms in Firefox

Pros Cons
simple and intuitive (boxes) UI for the user not entirely bug-free
framework runs very fast compared to other
frameworks

not many features aside from docking com-
pared to other frameworks

few lines of code to achieve basic docking
functionality

no regular updates since February 2014

predefined CSS styling with contrast rich col-
ors

37

6.5 jQuery UI Layout

Quantity Criteria Overview
Features(docking) 4
Features(general) 2
Lines of Code 42 lines of JavaScript, 28 lines of HTML

code
Performance 110ms in Firefox

Pros Cons
tested features were bug-free and stable no dedicated docking feature
code for framework runs fast compared to
other frameworks
once familiar with the syntax, few lines of
code are needed to set up multiple views
a wide range of general UI features
regular updates

6.6 jQWidgets

Quantity Criteria Overview
Features(docking) 5
Features(general) 2
Lines of Code 80 lines of JavaScript, 45 lines of HTML

code
Performance 221ms in Firefox

Pros Cons
basic docking features do not require many
code lines

more sophisticated layout and functionality
does require more code compared to other
frameworks

a wide range of features no OS license for commercial use
tested features were bug-free and stable code for framework runs slower compared to

other frameworks

38

6.7 wcDocker

Quantity Criteria Overview
Features(docking) 5
Features(general) 2
Lines of Code 119 lines of JavaScript, 1 line of HTML code
Performance 166 ms in Firefox

Pros Cons
some features, like a context menu combined
with docking, are unique to wcDocker

requires knowledge of some features to prop-
erly use them, for example that a right click
in a view opens a context menu for panels and
a right click on tabs opens a context menu for
tabs

a wide range of features especially designed
for docking
tested features were bug-free and stable
regular updates and active development of
new features

6.8 Discussion

As seen in the previous chapters, there are quite a few frameworks for either Java- and Web-
Technology. During the implementation of docking frameworks based on web-technologies like
HTML5, CSS, JavaScript, etc. it quickly became clear that these frameworks were in fact pretty
easy to implement and often required very few lines of code. The most notable differences of
the web-based frameworks lay in the diversity of features. Some of these frameworks,like for
example DockSpawn or wcDocker, had very specialised docking features. In particular, the drag
and drop feature with subsequently snapping windows to each other, worked very well in a web-
browser environment. On the other hand, these specialised frameworks did not offer many other
features, whereas jQuery UI Layout [Balliano, Dalman, 2014] for example offered a much richer
set of tools for window- and display space management but was lacking docking features. The
D3.js framework [Bostock et al., 2011] used for web visualizations worked very well with the
tested frameworks, except for some issues especially with DockSpawn [Code Respawn, 2012]
and jQWidgets [jQWidgets, 2014] where the content of the visualization was overlapping other
views when resizing the windows.

39

CHAPTER 7
Comparison of Java-based frameworks

7.1 Overview

Chapter 5 presented different Java-based frameworks. In this chapter I compare these frame-
works to each other. The comparison is based on a feature matrix to identify strengths and
limitations in the range of features a framework provides, as well as several criteria like perfor-
mance or lines of code and a list of advantages and disadvantages for every framework.

7.2 Feature Analysis

Like chapter 6, the following matrix gives an overview of different features for Java-based frame-
works. For details regarding the frameworks refer to chapter 5.

MyDoggy VLDocking DockingFrames EclipseRCP NetbeansRCP
Splitter + + + + +

Tabs + + + + +
Floating Windows + + + + +

Resizing + + + + +
Collapsible Views + + + + +

Docking + + + + +
Save/Load Layout + + + + +

Sliding + + + + +
Grouping + + + + +

Multiple Themes + + + + +
Layout Reset - - - + +
Perspectives - + + + -

Table 7.1: Feature matrix for Java-based frameworks.

40

7.3 Criteria

The following comparison of Java-based frameworks consists of an overview of quantifiable
criteria as well as a list of advantages and disadvantages. Quantifiable criteria include number
of features, both docking as well as more generalized features, Lines of Code to achieve the
functionality which is provided by the prototype implementation and performance measurement
in milliseconds for executing the framework-specific code on startup. My test system for the
performance measurement had the following specifications: Intel Core i5 @ 2.67 GHz, 4 GB
RAM, Win 7 SP1 64 Bit. Note that lines of code include the function calls for the visualizations,
the table values, the bar-chart and the console view seen in the prototype implementation. As
this code is nearly the same for every framework (except EclipseRCP, which uses SWT instead
of Swing), the framework-specific code for the actual features is what makes the difference in
the amount of code. Even if there is no specific definition of which features a docking frame-
work should provide, developers of these frameworks all implemented the same features but
with slightly different characteristics, especially regarding the drag and drop functionality while
docking.

7.4 MyDoggy

Quantity Criteria Overview
Features(docking) 6
Features(general) 4
Lines of Code 267
Performance 1056 ms

Pros Cons
distinction between normal views and tool-
windows

missing perspectives

a rich set of buttons, like undock, floating or
hiding predefined

tool windows and normal views are differen-
tiated and cannot be mixed together(for ex-
ample tabbing toolwindow into normal view)

different UI behaviour modes desk-
top/tabbed/multisplit

latest release is from December 2010

41

7.5 DockingFrames

Quantity Criteria Overview
Features(docking) 6
Features(general) 5
Lines of Code 309
Performance 1087 ms

Pros Cons
last release from 13th December 2014, regu-
lar updates

more complex, so implementation is harder

limited guarantee for backwards compatibil-
ity
different themes changing the style of views

7.6 VLDocking

Quantity Criteria Overview
Features(docking) 6
Features(general) 5
Lines of Code 304
Performance 816 ms

Pros Cons
very easy to set up basic functionality and
customize docking look and feel

latest release from June 2013

floating windows just programmatically pos-
sible, not interactively

42

7.7 Eclipse RCP

Quantity Criteria Overview
Features(docking) 6
Features(general) 6
Lines of Code 368 (mostly auto-generated code)
Performance 952 ms (evaluated with tracing options for

Eclipse RCP applications)

Pros Cons
full feature range of Eclipse IDE, a complete
window management framework
wide range of other features like Update
Manager, Cheat sheets, etc
different themes, possibility for custom
styling via CSS
predefined templates help setting up a project

7.8 Netbeans RCP

Quantity Criteria Overview
Features(docking) 6
Features(general) 5
Lines of Code 601 (mostly auto-generated code)
Performance 1493 ms (evaluated with Netbeans Profiler)

Pros Cons
full feature range of Netbeans IDE, a com-
plete window management framework

no out-of-the box perspective/workspace fea-
ture like Eclipse RCP

wide range of other features like Update
Manager, Cheat sheets, etc
different themes, possibility for custom
styling via CSS
Netbeans IDE has an UI toolkit for creating
applications with RCP, nearly no coding re-
quired for an application

43

7.9 Discussion

Compared with web-based frameworks (see chapter 4) Java-based frameworks have very sim-
ilar features, which is quite interesting regarding the fact that there is no standard definition
of the features of a high-quality docking framework. So Java-based frameworks do not differ
very much from the features provided. The most notable difference between all the Java-based
frameworks is the look-and-feel of the drag and drop, regarding docking functionality. Some
frameworks offer a preview of how the layout will look after docking a window somewhere else,
other frameworks just highlight the region where the dragged window will be placed and some
frameworks do not show what will happen with the dragged window at all. The interaction while
docking was quite fiddly with some frameworks, whereas Eclipse [Eclipse Foundation, 2014b]
or Netbeans RCP [Netbeans RCP, 2014] are very easy to interact with. Also, Java-based frame-
works are mostly harder to implement than their web-based counterparts in the sense that they
require significantly more lines of code. Especially frameworks like Eclipse [Eclipse Founda-
tion, 2014b] or Netbeans RCP [Netbeans RCP, 2014] offer functionality for building up a user
interface through their IDEs, which makes implementing these frameworks a quite straightfor-
ward task.

44

CHAPTER 8
Conclusion

This work presents an overview on docking frameworks based on Java and web technology. At
the beginning, the reader is introduced to the topic with figures and explanations about how
docking can work in a specific environment as well as a basic overview on the thesis. After the
basic introduction, I cover theoretical foundations that back up the necessity as well as the effi-
ciency of using docking and multiple views to better understand and comprehend multifaceted
data. Based on my experiences while implementing a prototype with different docking frame-
works, an overview on these frameworks is given after the theoretical foundations. The thesis
concludes with a comparison of the frameworks followed by a short discussion.

Overall, my research has revealed docking as a strong tool to support the user with managing
different views. There are also a lot of different frameworks available to set up an application
environment with docking features. While these frameworks often provide similar functionalitiy
regarding basic features, there are significant differences between:

• look and feel

• docking behaviour

• positioning possiblities

• features that do not relate to docking

The features needed - apart from docking - and the docking behaviour itself mainly influence the
decision for one certain framework. The look and feel can be changed individually for nearly all
frameworks with different themes. Most of the frameworks allow a wide range of positioning
possibilities but some are more restrictive than others. My prototype, provided as supplementary
of my thesis, helps in the decision process by giving a first hands-on experience with different
frameworks in action.

Apart from commercial frameworks, my thesis mostly covers open source frameworks in
detail and especially my prototype is implemented with open source software (except jQWid-
gets [jQWidgets, 2014]). Commercial frameworks are mentioned, but not analyzed in detail.

45

Another interesting topic for future work could be the possibility of docking features on mobile
devices. Frameworks based on web technology may be the most relevant for this topic, as they
already follow the responsive design principle. It will be interesting how these frameworks han-
dle the interaction during the docking process. Furthermore, it would be interesting to analyze
frameworks based on other technologies like Microsoft Silverlight and what kind of (docking)
features these frameworks provide.

46

APPENDIX A
Supplementaries

• Video of Dock Spawn to illustrate docking functionality

• Prototype with implementation of the following web-based frameworks:

– Dock Spawn

– JQuery UI Layout

– wcDocker

– jQWidgets

• Prototype with implementation of the following Java-based frameworks:

– MyDoggy

– DockingFrames

– VLDocking

– Eclipse RCP

– Netbeans RCP

47

Bibliography

Balliano, Dalman (2014). jQuery UI Layout. http://layout.jquery-dev.com. Accessed: 2014-26-
07.

Bostock, M., Ogievetsky, V., and Heer, J. (2011). D3 data-driven documents. Visualization and
Computer Graphics, IEEE Transactions on, 17(12):2301–2309.

Chamontin (2013). Vldocking. https://code.google.com/p/vldocking. Accessed: 2014-15-07.

Code Respawn (2012). Dock Spawn. www.dockspawn.com. Accessed: 2014-26-07.

de Caro (2010). MyDoggy. http://mydoggy.sourceforge.net/index.html. Accessed: 2014-15-07.

Eclipse Foundation (2014a). Eclipse RAP. http://eclipse.org/rap. Accessed: 2014-05-12.

Eclipse Foundation (2014b). Eclipse RCP. http://www.eclipse.org/downloads/packages/eclipse-
rcp-and-rap-developers/lunasr1. Accessed: 2014-28-10.

Houde (2014). Web Cabin Docker. https://github.com/WebCabin/wcDocker. Accessed: 2014-
26-07.

Hutchings, D. R. and Stasko, J. (2004). Revisiting display space management: Understand-
ing current practice to inform next-generation design. In Proceedings of Graphics Interface
2004, GI ’04, pages 127–134, School of Computer Science, University of Waterloo, Waterloo,
Ontario, Canada. Canadian Human-Computer Communications Society.

jQWidgets (2014). jQWidgets. www.jqwidgets.com. Accessed: 2014-29-10.

Myers, B. (1988). A taxonomy of window manager user interfaces. Computer Graphics and
Applications, IEEE, 8(5):65–84.

Netbeans RCP (2014). Netbeans Platform. https://netbeans.org/features/platform. Accessed:
2014-28-10.

Roberts, J. (2007). State of the art: Coordinated multiple views in exploratory visualization. In
Coordinated and Multiple Views in Exploratory Visualization, 2007. CMV ’07. Fifth Interna-
tional Conference on, pages 61–71.

Sencha (2014). Sencha ExtJS. http://www.sencha.com/products/extjs. Accessed: 2014-26-07.

48

Shibata, H. and Omura, K. (2012). Docking window framework: Supporting multitasking by
docking windows. In Proceedings of the 10th Asia Pacific Conference on Computer Human
Interaction, APCHI ’12, pages 227–236, New York, NY, USA. ACM.

Sigg (2014). Docking Frames. http://dock.javaforge.com. Accessed: 2014-15-07.

Telerik (2014). Telerik Kendo UI. http://www.telerik.com/kendo-ui. Accessed: 2014-31-10.

The Dojo Foundation (2014). Dojo toolkit. http://dojotoolkit.org. Accessed: 2014-26-07.

Wang Baldonado, M. Q., Woodruff, A., and Kuchinsky, A. (2000). Guidelines for using multiple
views in information visualization. In Proceedings of the Working Conference on Advanced
Visual Interfaces, AVI ’00, pages 110–119, New York, NY, USA. ACM.

49

	Introduction
	Related work and theoretical foundations
	Window and Display Space Management
	Multitasking with multiple views and docking
	Visualization with multiple views
	Interactive data exploration with multiple views

	Method
	Overview of web-based frameworks
	Dock Spawn
	JQuery UI Layout
	wcDocker
	jQWidgets
	Others

	Overview of Java-based frameworks
	MyDoggy
	DockingFrames
	VLDocking
	Eclipse RCP
	Netbeans RCP

	Comparison of web-based frameworks
	Overview
	Feature Analysis
	Criteria
	Dock Spawn
	jQuery UI Layout
	jQWidgets
	wcDocker
	Discussion

	Comparison of Java-based frameworks
	Overview
	Feature Analysis
	Criteria
	MyDoggy
	DockingFrames
	VLDocking
	Eclipse RCP
	Netbeans RCP
	Discussion

	Conclusion
	Supplementaries
	Bibliography

