]
—
Cmm

VIENNA

Debugging Aids using Temporal Visualiza-
tion
Supervisor: Bilal Alsallakh, Silvia Miksch

Peter Bodesinsky,Alexander Gruber,Dorna Nassseri

Vienna University of Technology
Institute of Software Technology & Interactive Systems (ISIS)

CVAST-TR May 2011

Authors: Peter Bodesinsky,Alexander Gruber,Dorna Nassseri

peter.bodesinsky@gmx.at,alex_gruber@gmx.net,dorna_ns@yahoo.com
http://www.cvast.tuwien.ac.at/

Contact: Vienna University of Technology
Institute of Software Technology & Interactive Systems (ISIS)

FloragaBe 7/702
A-1040 Vienna

Austria, Europe

Web Address: http://www.cvast.tuwien.ac.at/

Abstract

In this report, we present a novel visualization-based method for debugging software programs
and analysing their runtime behavior. One method aims at enabling developers to get an
overview of variable stories by visualizing the values which these variables have taken over the
course of the program. This helps in spotting errorous or unexpected variable assignments.
The other method enables visualization of large arrays as a series or bar charts, which helps in
gaining insight about the values in this array, such as value distribution, minimum values or
maximum values. We implemented the methods as a plugin for the Eclipse Java IDE.

Chapter 1

Introduction

The goal of this project is to ease the debugging process with the help of a visual debugging
tool implemented as Eclipse plugin, which is able to visualize variable histories during run-
time. It is able to fetch read and write accesses to variables and to display the sequence of
access/modifications events inside a view. In the course of our work, we examined different
visualization techniques and tried to find the most useful approaches.

Our visual debugging tool is closely related to the general field of software visualization,
where visualizations are generated from software or code. In a broader view software visual-
ization can be defined as the ”visualization of artifacts related to software and its development
process”, including not only code, but also other artifacts like documentation or bug reports [4].
Software visualization aims to help understanding, debugging and analyzing software. Different
aspects of software can be visualized: The static structure can be taken into account, which
means static aspects like data structures or relations between software modules, e.g. UML
Class Diagrams. Software evolution is another aspect, i.e. code changes in course of develop-
ment process can be visualized. The dynamic structure, which means software behavior, can
also be considered and in this case the generation of visualizations requires run-time information.
Visual debugging is an application area of dynamic software visualization. Visual debugging can
be separated into two subcategories. It is possible to show either the program/memory states
or to show program code (highlighting) and test results. Our tool visualizes memory states
and belongs to the first category. Previous approaches in this area are mainly graph-based,
for example interactive visual unfolding, which enables the user to inspect the current memory
data structures by clicking nested boxes (Fig. 1.1a). The whole memory structure can be un-
folded using traversal-based visualization, where memory structure visualization is generated
according to rules (Fig. 1.1b). Further methods are memory graphs and reference patterns [4].

Many development environments, like Eclipse, offer traditional debugging aids, like break-
points. They provide a simple way to stop program execution when certain conditions are met
and can be very useful during debugging. But it can become tedious to check a high amount of
variable changes, e.g. in loops with a large number of runs, and to keep track of the previous
states. We offer a new method for visualizing these variable histories, and enable the developer
to observe variable state history without interrupting the program. The debugging process
should by simplified by providing a visual overview of discrete variable changes during runtime.
Debugging programs with concurrent code is another application area for our approach. Our
tool is able to emphasize the temporal relationships between read/write events of one or more
variables and to visually ease the understanding of time-oriented code behavior. Furthermore
we are dealing with the visualization of large arrays, because the inspection of large arrays can

1 : list *() | name = “Luca™ next | name = “Jean-Luc™|, /\

[(List =) ox884ash2| :Eii _ om081a64 :Eii - 2::::;::: Visualizaﬁon o o
Objects

name = “Luca™ /\ /\l

self = 0x8080a88
next = 0x808laé64

(a) nested boxes (b) render rules

Figure 1.1: examples for memory state based visual debugging techniques [4]

be tedious when using the textual listing of standard IDE debugging tools.

The report is structured in several sections. Section 2 (related work) gives an overview of
state of the art tools related to our project. Section 3 and 4 (Visualizing Variable Histories, Vi-
sualizing Arrays) describe the main concepts and visualization techniques. Section 5 (Technical
Details) provides deeper insight into technical aspects and section 6 (Evaluation) describes the
evaluation process, followed by section 7 (Conclusion).

Chapter 2

Related Work

Several developments have been made in visual debugging that have some commonalities with
our project.

Matlab has a feature called linked plots (since Release 2008a), and allows to connect a plot
to a workspace variable [5]. The plot is automatically updated according to changes of the
source data and can be used for debugging together with breakpoints (Fig. 2.1). Although this
is a useful approach for static data (e.g. arrays), it does not support time-oriented plotting of
variable histories and the debugging process is interrupted on breakpoint hit.

Debug Visualization Plugin for Eclipse visualizes memory states as directed graph [1]. Java
objects are displayed as nodes and relations between them as edges. It allows choosing a variable
in the Eclipse variables view and adding it to the graph using the context menu. This tool might
be well suited to get an overview of memory structures and for program understanding, but
maybe not the best choice for most general debugging purposes.

Another Eclipse-based debugging tool is JIVE, which also relies on graphs for visual de-
bugging. It uses runtime information to generate dynamic object and sequence diagrams (Fig.
2.2). Object diagrams reflect the current execution state of a program with links between ob-
jects representing method calls. Objects and activated methods within them are represented
as nodes. The sequence of method calls is visualized by sequence diagrams. It is possible to

VEEde | kAL 0DEA-F0 »BoB0-x

@ Lmke1d variables/expressions: A Edit... E
08
061
0.4r
02r
OO 2IO Bb 100

Figure 2.1: linked plot in Matlab showing a workspace variable [5]

3 oObject . | 48 main (id = 1) | | [C] Bankl ‘ & Client:1 | | G Bank: 1 | | @ CheckingAccount: 1 | | S SavingsAccount: 1

Client:1
l@f&;\gkgnanuctians:l |
/Bank:1 T S r———

(@ withdraw:3 S S ——
Wgﬂ[ﬂﬂuﬂt: i | & SavingsAccount: 1

@debisy [| = 8 82 W _

G Bark | |G Clientl |@ CheckingAccount”G Savingsn:cnuntl o
[I I | main: 1

createCheckingAccou

<init>:1

createSavingsAccoul
<init=:1

i

(a) object diagram (b) sequence diagram

Figure 2.2: diagram types in Jive [3]

step forward and backward or to select an execution state by clicking on the corresponding
point. A query can be executed on the program state history and the results are highlighted
in the sequence diagram [3]. JIVE is a useful tool, especially for educational purposes, but for
extensive projects the diagram might grow to a large extend and complexity.

Chapter 3

Visualizing Variable Histories

3.1 Avoiding Switching/Halting

The Eclipse IDE offers many debugging aids to step through a program and to locate errors.
The most popular and the most widely used debugging aids are different kinds of breakpoints
like line breakpoints, method breakpoints, exception breakpoints, watch points and so on. In
practice this often means that software engineers have to step through source code line by
line or jump from breakpoint to breakpoint, searching for any irregularities in their program.
Sometimes this can be quite burdensome or even impossible, especially when programs are
time critical or when they run in connection with different other threads, because the original
behavior of the program cannot be reconstructed with debugging. It may also become likely that
software engineers lose the overview over the source code of the program the more complex and
the more bigger it becomes. These debugging problems constitute a gap which is filled by our
plugin. Our plugin enables users to watch read or write accesses on selected variables without
interrupting the observed program. This ensures that the program runs without interruption
and makes it still possible for the user to track the functionality of the monitored program in
detail and detect errors. This is especially helpful in conditions where hundreds or thousands
of accesses occur on many different variables or objects. Through the visual presentation of the
accesses which happen on surveilled variables, it also becomes easier for the user to keep an
overview over variable state changes. To realize un-interrupted debugging with our plugin, the
user has to mark the definition of a variable with a watch point and select it to be tracked from
the plugin. By doing this, the underlying values of the variable are captured via a watchpoint
listener offered by JDI (Java Debug Interface). The watchpoint listener records every read and
write access on the variable and records it in a data structure (” WatchPointValue”) which saves
either the current or the new value of the variable depending whether the variable was read- or
write accessed. Furthermore it records the timestamp when the modification happened and the
name of the accessing thread as well as the name of the method which performed the access.
Also the source code line, where the modification was executed is stored. Through saving the
timestamps, the name of the accessing method/thread and the code location, the user can easily
find out which value was assigned to the prospected variable at which time. He/she can also
track at which point in the source code the modification happened and by which thread or
method. This helps him/her to understand the actual code behavior of his program. While the
observed program runs, variables are usually written, or read several times. In order to store all
accesses on the surveilled variables, the recorded watch point values are gathered in lists which
are assigned to each watched variable. These variable histories are then visualized in the user
interface of the plugin.

3.2 Visualizing Value Histories

The view for visualizing variable histories consists of two main components. The first area on
the left side of the view is a treeviewer component which lists all variables which were selected for
observation by the user. The other one is the drawing area where the histories are dynamically
drawn. The charts which are drawn are step charts which illustrate the changes on surveilled
variables discretely. They consist of points which are connected by lines. This connection sets
the variable accesses in a chronological order. These step charts are updated with every new
access which is recorded for a variable. This means for the user, that he/she can either run
the program without interruption and watch the value evolution on his/her observed variables,
or he/she can still step through the program in debug mode, while every change is still logged
and visualized. Figure 3.1 illustrates the layout of the plugin view. Our plugin differentiates
between two kinds of variables. The first are the numeric or primitive variables. They contain
values which are decimal or binary numbers and can therefore be ranked by their value. The
other type are categorical or complex variables like Strings or Objects. In their case it is not
possible to put the values of categorical variables into a vertical order. Thats why we simply
visualize them in a straight line where each point on the line marks an access on the drawn
variable.

3.2.1 Visualizing Primitive Datatypes

Numerical variables are often used to count something or to calculate huge amounts of data.
Thereby they are likely to be accessed very often in a short time. If they are visualized in our
plugin this results in a huge amount of drawn points which often form a recognizable patter
(eg. calculated functions, or counter variables). By visualizing numeric variables, the user can
examine the graphical pattern of the variable histories and find any irregularities in much less
time than he would have needed with debugging through the source code line by line.

Targets: |DependencyTest at localhost:57281 -
orgets: [DependencyTest ot Iocalnos J 7] Scale by time [Show read-accesses Color by: [Calling method «| ' Instant Search: Zoom: [}
DependencyTest. None
id=17 Calling method

id=19 Calling thread

| ﬂ
-10 # . -

889 1516

-10 & 5
1317 1794

Figure 3.1: visualization of a numeric type variable in several instances

3.2.2 Visualizing Complex Datatypes

Unlike primitive data types, complex type variables can obtain null values. If this happens
on a visualized variable in our plugin, the access where the variable is set to null and all read
accesses which return a null value are generally marked in grey. So the user can see at one
glance where and when the variable took null values. This is especially useful when he tracks

NullPointerExceptions. If the user examines numeric variables he can easily see which value
they have because they are ordered vertically. In case of categorical variables it may become
much more difficult to find a specific variable state beacuse they are arranged in a straight line.
To solve that problem our plugin has an integrated instant text search. It allows the user to
search for certain categorical values which may be obtained in the value histories. If a variable
(it does not matter which, because the full text search looks through all values of all drawn
value histories) ever contained a value which the user searches for, then it is marked in red.
This can be seen for example in Figure 3.2.

Targets: | StringTest at localhost:57132 -
e I e J [JScale by time [7]Show read-accesses Colorby: [None v| Instant Search: thisis Zonns 0

StringTest.resutt
id=16

null at 14276ms

Figure 3.2: visualization of a categoric type variable

3.2.3 Horizontal Scaling and Zooming

The user can check if he/she wants to scale the abscissa in state changes or in a time dependent
manner. He/She can do this by checking or unchecking the ”Scale by time” checkbox in the
upper part of the plugin user interface. If he/she leaves it unchecked, the variable accesses are
still drawn in their chronological order, but the horizontal distances are constant and do not
represent the time which has passed between each access. If he/she checks the checkbox, the
variables accesses are drawn in dependency to the time which has elapsed since the initiation
of the tested program. This enables the user to examine the program performance and he/she
can also compare between variables and find out whether the chronology of accesses on them is
correct. If the user visualizes variable histories scaled by time, there may be graphical clusters
of accesses where lots of accesses happen in a short period of time. To look at these clusters
in more detail, the plugin includes a zoom function to increase the zoom level or to reduce it.
This helps to look at variable state changes in detail on the one hand, and to keep an overview
over the variable history on the other hand.

3.2.4 Visualizing variable behavior in several instances

The plugin is capable of recording variable histories in several JVM instances. This means that
the user can run the program in a first instance where he observes his variables of interest.
Then he can start another instance of the same program, watching the same variables. He can
then select both instances in our plugin (by using the combo box on the left upper corner) and
visualize both courses of the selected variables. This makes it easy to watch variable behavior
under different circumstances for example by feeding the tested program with different input
data. He can also decide whether he wants to see only write accesses or whether he also wants
to see read accesses. This is done by checking the ”Show-read access” checkbox in the upper
area of the interface. All read accesses are shown as small squares, while the write accesses are
illustrated as circles.

3.2.5 Inspecting Multiple Accesses

An important feature of our plugin is that the user can see graphically which method or which
thread has written or read into or from a variable. This is realized by assigning different colors
to each thread and to each method which is run in the tested source code. When opening
prospected variable, the access is visualized in the colour of the method in the step chart.
Referred to Figure 3.1 there is an integer variable visualized which is examined in two different
instances. The user can select via the combo box at the upper border of the plugin interface
whether he wants to see which thread accessed a variable or which method used it. If he/she
selects the method variant he/she can also choose the stack level (by changing the slider next
to the combo box) of the accessing method. So he/she can not only see the method in which
the variable is modified but also the method names which are engaged in accessing the method
to alter the observed variable. This is a useful feature to detect for example phantom problems,
where a variable is mutually changed by different threads or methods and may cause errors in
the further performance of the program.

3.2.6 Inspecting exact variable states and code locations

Another important feature is to inspect the exact state which the variable took on at a certain
timestamp. If the user moves with the mouse over a painted read or write access, the current
value of that access is shown together with the timestamp. Furthermore if he double clicks
the point, the user can hop directly to the location in the tested program where the access
happened. So, he can retrace what happened when, where and to which variable.

Chapter 4
Visualizing Arrays

Every array has a data type or underlying data structure which is assigned during the definition
of the array. It consists of at least one or several field elements which are either "normal”
variables or data structures who may contain further sub attributes. Searching these field
elements in Eclipse during debugging is an awkward task. It is tedious to check every item in
the array, especially when the field elements of an array contain many sub attributes, or when
the array has a large size. In Eclipse, the contents of an array are displayed in textual lists
which can be expanded and explored value by value. To keep an overview of all values or of
the array structure will become more difficult the more elements the array contains. This is
the point where our plugin takes effect. Unlike the visualization of variable state changes over
time, our plugin visualizes the contents of an array at a certain timestamp (snapshot) and gives
an overview about the structure. It further analyzes the array contents and creates bar charts
which visualize the distribution of the values stored in the array. This is not only possible with
simple elements but also with the sub attributes of data structures that are saved as elements
into the array. By that way, the values of certain sub attributes can be directly compared with
each other.

The view of the array user interface is similar to the view of the value histories. It also
contains two main components, where the left one is a treeviewer component and the right one
is a drawing area. The treeviewer component enlists the type of elements (not the elements
itself!) from the arrays which were selected for observation. If the elements have sub attributes,
their names are also listed and in case one of them is selected, the corresponding field elements
are visualized in the drawing area. They can either be shown as value-series, similar to the
visualization of single variables or they can be drawn as bar chart. In which manner they shall
be drawn can be decided by the user through selecting the appropriate option button in the
upper area of the plugin view.

The plugin contains a zoom function for the array view too. This enables the user to
zoom into a point of interest or to zoom out to gain more overview of the displayed element
values. Each attribute or each series of elements is painted in the view as diagram, which can
be dynamically added or removed from the view. The array view shows the exact value of an
element together with its index in the array, as soon as the user moves over the point with the
mouse.

4.1 Series

If the user has decided to show the selected array elements as value series, they are visualized
depending on the underlying variable type. If the type is a numeric type, the element values
are drawn as line diagram. The points of the element states are connected with each other and

ordered vertically according to their value. But in this case that does not mean that they are
horizontally in a chronological order. They are drawn according to the increasing index of the
array. The links between the points are only painted to increase the readability of the chart. On
the one hand it is easier for the user to determine unusual variations between the variables, and
on the other hand he/she is able to estimate an average value as well as it is easier for him/her
to locate minimum or maximum values. In case the underlying variable type is a categorical
type, the element values are visualized as scatter plot, because the elements cannot be ordered
vertically according to their values. There is also no need to connect them with lines because
they have no direct relation to each other. They are also drawn in a horizontal line so there
are no statistical characteristics detectable. To simplify the location of specific states which the
user is interested in, the array view also contains an instant text search. If a point in the view
area is found which matches the search string, it is highlighted in red. That makes it easier for
the user to find certain values fast, especially when he is interested in the visualization of huge
sized arrays. Figure 4.1 shows an illustration of a value series visualized array, which consists
of ”student” data structures. These data structure contains three attributes name, age and
academic year. In the image the names (categorical variable) and the academic years (numeric
variable) of each student are displayed. This poses an easy way for the user to inspect all values
or sub values of an array quickly, without clicking through lists of data structures, and it is still
possible for him to keep an overview over all appearing values.

Array Expressions:
View as: @ Series () Histogram Instant Text Search: Tom Zoom: {

students
name

age

acadYear

Figure 4.1: visualization of element sub attributes in an array

4.2 Bar Charts

In case the user decides to view a selected series of array elements in form of a bar chart, a
graphical bar is assigned to each different value that occurs in the array. Depending on the
number of value appearances, the bar increases it’s height relatively to the other bars. This
enables the user to set the frequency of each value in the array in relation to each other. He/She
can determine immediately which value appears most in the array and how often other values
appear in relation to the most frequent value. The number of appearances is noted on the
ordinate axis while the different values are displayed on the abscissa. Figure 4.2 shows an
example of an integer array which has a size of one thousand elements. All elements and their
frequency are displayed as bars, which enables the user to see immediately which values appear
in his/her large array, how often they appear and which one appears most. So the bar chart is
a useful facility to gain a quick overview over the array occupancy.

10

= Console [¥ Tasks m 1) Variable Hmris] =g

Armay Expressions:

arrd.

View as: () Series @ Histegram Instant Text Search: Zoom:

=

Figure 4.2: visualization of an integer array as bar chart

11

Chapter 5

Technical Details

Our visual debugging tool is implemented as Eclipse plugin and makes use of Eclipse RCP (Rich
Client Platform) architecture. Eclipse can be regarded as plugin framework, and is based on a
Platform Runtime at its core, which loads and executes plugins. Each Eclipse application and
even the basic Eclipse SDK itself are based on this plugin model. A plugin can use extension
points of other plugins or provide own extension points for other plugins. The default Eclipse
Platform (Eclipse SDK) is composed of subsystems, each of the subsystems is implemented with
the help of one or more plugins. The major subsystems are the Platform Runtime, Resource
Management, Workbench UI (defines extensions points to add GUI entries and provides GUI
toolkits), Team Support, Help System, Debug Support and JDT (Java-specific part) [2].

Several extension points are used by our project, extension points of the subsystem /package
org.eclipse.ui are used for Ul integration into Eclipse (menu-commands, Eclipse-Views). A
java specific JDT extension point named org.eclipse. jdt .debug.breakpointListeners
is used to get the required data from the debugging process.

The software architecture of our project is based on the MVC pattern, and therefore
separated into Model, View and Controller classes. General classes for plugin lifecycle and
watchpoints installation events are defined in the package visdebugger. Classes describing
the user interface (View) are located in the package visdebugger.view. The package
Visdebugger.control contains the controller classes responsible for drawing and reacting
to user input. The Visdebugger.model classes define the data model and are responsible for
model event notifications, i.e. notification of listeners in case of watchpoint accesses. Package
visdebugger.eclipseuiactions contains special classes for Eclipse Ul interaction. See
Fig.5.1 for an overview of the collaboration between the main system components.

5.1 Data

5.1.1 History

In order to draw the state history for a variable, data has to be fetched from the debug-
ging process. Eclipse supports multiple types of breakpoints [6], among them the best known
type is a line breakpoint, which is hit when a particular line is executed. Other types in-
clude exception, class load and method breakpoints. To fetch the data for the views, a spe-
cial type of breakpoint called watchpoint is needed, which is declared on a field (variable)
and reacts/breaks execution on variable access or modification events. The extension point
org.eclipse. jdt.debug.breakpointListeners is used to gather information about

12

ViewPart

Arrays View Part Value Histories View Part
Package::View Package::View
.1 .1
draws |nﬁob draws |n‘ﬁob
Arrays Controller Value Histories Controller
Package::Controller Package::Controller
- ArrayList Array Expressions - WatchPointManager wpManager
properties # properties
+ add Array Expression() + notify WatchPoint Installed()
+ show View() + notify Watch Point Hit()
+ view.addMouseListener() + showViewFor()
+ draw() + view.addMouseListener()
+ draw()
- 1].1
< contains A redcts to
D..n 1}.1
ArrayExpression WatchPointManager
Package::Model Package::Model
- Hashmap watchpoints
n - Hashmap history
c{m%l 'n;lsb
crgates Watchpaint

Package::Model

_1 e

Eclipse Extension Point

Figure 5.1: class diagram illustrating the dependencies between the main system components

breakpoint installation and removal events. If a new watchpoint is declared, an event listener is
installed and access/modification events are managed by an instance of WatchPointsManager,
which also holds and gathers information for all variable histories.

5.1.2 Array

The data for the visualization of static arrays is gathered with the help of selection events
(org.eclipse.ui.popupMenus extension point). If the user clicks the corresponding menu
entry in the Eclipse variable view or the code editor view, the selection is analyzed and the
value and name of the array is extracted. After this a new ArrayExpression is created, which
holds all necessary information for the view.

5.2 Views

The views are integrated in the eclipse Ul using the org.eclipse.ui.views extension
point. JFaces and SW'T are used to build the GUI functionality and we decided for the SWT

13

drawing API in the class org.eclipse.swt.graphics to perform the drawing of the dia-

grams. ValueHistoryViewPart and ArrayViewPart define the basic GUI elements and

layout of our Eclipse views, while the logic for interaction is defined in the controller classes
(ArraysMainController, ValueHistoriesMainController). The diagrams themself

are code objects (ArrayValueView,ValueHistoryView) integrated in the parent Eclipse

view and are managed inside ArrayViewsManager and HistoryViewManager, which are
responsible for creating the suitable diagrams and refreshing them. ValueHistoriesMainController
holds an instance of WatchpointManager, gets notified on access/modification events and

uses HistoryViewManager to refresh the diagrams. Diagram drawing logic and viewing
transformations are implemented in the corresponding controller classes, common functionality

is implemented in abstract classes (AbstractArrayController, AbstractValueHistoryController),
while special functionality is defined in classes like NumericArrayController for integer

types histories or BarChartArrayController for integer arrays.

14

Chapter 6

Evaluation

We decided to discuss and analyze usability issues inside the project team. Due to short iteration
cycles and joint review, we were able to improve our visualization techniques in the course of
the project. Extensive user studies will be performed in the future and may also give further
insight into possible application scenarios of the tool.

When analyzing large arrays scalability is another important issue, our tool is able to handle
and visualize arrays with thousands of values in general. The value series view can grow large for
huge arrays, which might make it necessary for the user to set the zoom factor to a low value in
order to maintain an overview of the array. In this case the values series can collapse to clusters,
i.e. it might result in multiple data points occupying one pixel. Although it is not possible to
see the exact relations between adjacent array values anymore, it is still feasible to get a quick
impression of the value distribution, without losing the complete information of the value index
locations. Additionally the minimum and maximum value can still be identified (Fig.6.1). The
histogram view scales well with huge arrays, and is suitable to get a quick overview of value
distributions, especially in cases where visual identification of value index location is not so
important.

Even for large arrays the performance is still sufficient for interactive visualization. Only if
the array size exceeds an upper size limit, performance can drop in a noticeable way. But this

happens in case of arrays containing tens of thousands of values, which are typically analyzed
using external software tools.

View as: @ Series () Histogram Instant Text Search: Zoom: D

100

Figure 6.1: although the array values are building clusters, minimum and maximum can still
be clearly identified

15

Chapter 7

Conclusion

We have presented a tool for visual debugging, designed to provide developers with a compact
and easy to use GUI integrated into Eclipse IDE. Our tool presents a new approach to visual
debugging, by giving a quick visual overview of variable read and write accesses. It enables
to observe variable state changes without interruption, while temporal relations are preserved.
Especially for time critical concurrent code and a huge amount of variable accesses this can be
very helpful. Multiple chart views with a common time origin support debugging of complex
programs and allow seeing correlations between different variables. Coloring the points based on
different semantics like method names or thread names is another feature, which helps debugging
concurrent code segments. In order to differentiate between read and write accesses, the read
accesses are drawn as squares and the write accesses as circles. By the means of these features
some patterns and error types can be identified visually, without the effort needed in traditional
debugging tools. Visualization techniques include step charts for numeric types, which show
the values in vertical relation to each other, and line charts for non-numeric types.

Visualization of large arrays in a separated Eclipse view makes debugging more comfortable
compared with the standard IDE tools, which only allow inspecting the array values using a
textual listing. Our tool is able to visualize array values as series, either as connected points for
numerical array data, or without vertical scaling in case of categorical data. Bar charts on the
other hand can give a quick overview of content distribution of large arrays by counting value
appearances. Furthermore our tool supports zooming and panning and instant text search in
both views.

Ongoing evaluation and improvement are planned for the future, because development is not
already finished. Feature extension and code cleanup/refactoring will be performed in coming
software development cycles. A next step would be setting up an eclipse update site to make
distribution and installation as easy as possible. Global availability of the source code is another
goal, because it gives developers the opportunity to add functionality and own contributions
to the project. Additionally extensive user studies are planned to get usability feedback and
receive input for possible improvements.

16

Bibliography

Debug visualization plugin. http://code.google.com/p/debugvisualisation/. version 04.2011.
Eclipse Platform Plug-in Developer Guide v3.1.

Jeffrey K. Czyz and Bharat Jayaraman. Declarative and visual debugging in eclipse. In
Proceedings of the 2007 OOPSLA workshop on eclipse technology eXchange, eclipse *07,
pages 31-35, New York, NY, USA, 2007. ACM.

Stephan Diehl. Software Visualization. Springer, 2007.

matlab documentation. Making graphs responsive with data linking.
http://www.mathworks.com/help/techdoc/data_analysis/brh7_h0-1.html. version 04.2011.

Prakash G. R. Types of breakpoints in eclipse. http://www.eclipse-tips.com/tips/29-types-
of-breakpoints-in-eclipse. version 04.2011.

17

