
A Comparative Study of web-based
Visualization Technologies on

Mobile Devices

BACHELORARBEIT

zur Erlangung des akademischen Grades

Bachelor of Science

im Rahmen des Studiums

Software & Information Engineering

eingereicht von

Matthias Krug
Matrikelnummer 0828965

an der
Fakultät für Informatik der Technischen Universität Wien

Betreuung: Dipl.Ing. Bilal Alsallakh, Dr.techn.

Wien, 22.11.2015
(Unterschrift Verfasser) (Unterschrift Betreuung)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

A Comparative Study of web-based
Visualization Technologies on

Mobile Devices

BACHELOR’S THESIS

submitted in partial fulfillment of the requirements for the degree of

Bachelor of Science

in

Software & Information Engineering

by

Matthias Krug
Registration Number 0828965

to the Faculty of Informatics
at the Vienna University of Technology

Advisor: Dipl.Ing. Bilal Alsallakh, Dr.techn.

Vienna, 22.11.2015
(Signature of Author) (Signature of Advisor)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Abstract

Smartphones and tablets become widespread computing devices, both for personal users, and in
business domains. In many cases, these applications involve displaying visual representations
of data, as well as interactivity features to explore these visualization.

Due to the varying operating systems used by these handheld devices, it becomes cumber-
some to provide native applications (apps) for a large spectrum of devices. To overcome this
problem, one alternative is to develop these applications using web-based technologies that are
supported and standardized for multiple platforms. Various web-based technologies have been
developed for displaying graphical elements, such as Scaleable Vector Graphics and WebGL.
This poses a challenge for web developers who aim to select suited technologies for their appli-
cations.

This thesis surveys state-of-the art tehnologies for creating interactive web-based visualiza-
tions for mobile applications. Furthermore, the thesis reports a quantiative performance com-
parison of three main technologies: SVG, Canvas, and WebGL.

For each technology a representative library was selected and three pre-defined visualization
scenarios were implemented using these libraries to enable the comparison of these technolo-
gies in a unified way. The three test prototypes of each technology were executed on multiple
platforms and using different: a desktop computer, a tablet, and a mobile device, using three
different browser: Safari, Chrome, and Internet Explorer. The corresponding execution times
needed to create the respective visualizations are measured and reported. Furthermore, the three
technologies are compared with respect to their support of interactivitiy and the extensibility to
create new chart types.

These results show that every framework has its merits and short-comings, depending on the
application. By this, the thesis provides a guidance for developers who in choosing an appropri-
ate technology for their applications. Furthermore, our open-source prototypical implementation
of three types of visualizations using three different technologies help conducting further com-
parisons between these technologies.

i

Contents

1 Introduction 1

2 Related Work 3
2.1 Information visualization using web standards 3
2.2 Information visualization on mobile devices 3

3 Method 5
3.1 Groundwork . 5
3.2 Scenarios . 5

4 Overview of the Surveyed Web-based Visualization Technologies 11
4.1 SVG . 11
4.2 Canvas . 15
4.3 WebGL . 17

5 Comparison 23
5.1 1st Scenario . 23
5.2 2nd Scenario . 30
5.3 3rd Scenario . 32

6 Conclusion 37

Bibliography 39

iii

CHAPTER 1
Introduction

Every day more and more data is beeing generated. In 2013 [Dragland, Åse, 2013] stated that
90% of all the data in the world has been generated over the last two years. To make sense of
huge amount of data, visualizations can help a lot. Our visual system is extremely well built for
visual analysis [Iliinsky, Noah, 2012]. That makes it easier to get an overview over a data set and
recognise connections and patterns with the help of charts and graphs than with simply looking
at raw data.

Nowadays more than 42% of the world population has access to the internet through a va-
riety of devices. About 33% of the total web pages served were to mobile phones [Kemp,
Simon, 2015]. Since there are many different types of devices with different capabilities avail-
able, standardised technologies like HTML and CSS and Javascript are a good way to target a
diverse audience. Native mobile applications (apps) have to be developed for every single plat-
form, whereas the aforementioned technologies run in a browser and usually only have to be
slightly tweaked for specific platforms. In addition to HTML [W3C, 1999], CSS [W3C, 2015]
and Javascript [MDN, 2015], dedicated technololgies have been developed to create graphical
elements such as Scalable Vector Graphics (SVG) [W3C, 2011], Canvas [W3C, 2014b] and We-
bGL [Khronos Group, 2015]. Adobe Flash [Adobe, 2015] and Java [Oracle, 2015b] can also
be used to create interactive web-based visualization, but the support of those two technologies
on non-desktop devices is not very good [Jobs, Steve, 2010] [Oracle, 2015a]. The downside of
the web-based approach is that all these standards vary across operating systems and browsers in
terms of usage, functional support and performance. But to assist in developing this kind of web-
based applications there are a number of toolkits/libraries available. These libraries try to hide
cross-browser compatibility issues and to give web developers an easy-to-use set of functions.

This thesis gives an overview of state-of-the-art web-based visualization frameworks using
SVG, Canvas or WebGL with a special focus on mobile devices. For each technology one
representative library is selected from a number of libraries and then compared to the others in
regards to performance, interaction/animation and extensibility. It aims to give the reader a solid
guidance for choosing an appropriate technology and software library for a given task.

1

In the following section some related work in the fields of information visualization using
web standards and information vosualization on mobile devices is presented. In section 3 it is
then explained how the libraries were found and how they are going to be compared. Section 4
lists the found libraries with some key facts grouped by the underlying technology they utilize.
The subsequent section (5) describes the results of each scenario for every choosen library.
Concluding this thesis, in section 6, with a summary of the comparison.

2

CHAPTER 2
Related Work

This section gives an overview over the current state of the art regarding information visualiza-
tion using web standards in general and then more specifically on mobile devices.

2.1 Information visualization using web standards

Seven years ago [Lammarsch et al., 2008] compared server-based rendering and plugins like
Adobe Flash, Java Applets and Microsoft Silverlight in respect to interaction. They disregard
technologies such as SVG and HTML5 [W3C, 2014a] Canvas, because at this time they were
either cumbersome to implement or still at an early stage of their development.

In contrast [Johnson and Jankun-Kelly, 2008] explored the capabilities of SVG and HTML5’s
Canvas for 2D information vizualisation. They implemented parallel coordinates and squarified
treemaps und used a Java implementation as a control. They concluded that this two technolo-
gies have the potential to be used where Java Applets and Flash could not be used. But warned
about their limitations regarding performance for medium and large datasets, espacially if they
must be combined with interactivity.

2.2 Information visualization on mobile devices

[van Tonder and Wesson, 2008] address amongst other issues the problems and shortcomings
of interfaces for mobile devices referring to small displays, slow hardware and new interaction
procedures and discuss possible means to deal with these limitations.

In their work [Moelker and Wijbrandi, 2012] described the state of the art for 3D data visu-
alization on mobile devices. They researched the currently supported HTML5 functionality and
performed a benchmark which compared the performance of native (OpenGL) applications with
web-based (WebGL) applications. Their conslusion is that WebGL is a good way to create 2D

3

and 3D graphics but still lacks the speed of native OpenGL implementations. Regarding the
speed of Javascript they state that its about ten times slower than native applications. Due to the
lack of support and general performance issues they conclude that these techniques are not a fea-
sible option for complex visualizations. However despite these drawbacks they acknowledged
using web applications could save development effort if an application has to run on serveral
platforms.

[Levkowitz and Kelleher, 2012] state that computing is going through a paradigm change. Due
to a high propagation of cloud-based compute services and very capable mobile devices the
combination of both provide the best computing resources. They argue that with the spreading
of HTML5 and it’s graphical capabilities (coupled with a cloud-based platform for the “heavy
lifting”), mobile clients will enable high-performance graphics for most users most of the time.
They further assert that their vision of a near future will change the display of the growing
amount of data we face every day.

[Osebitz, 2015] surveys Java-based visualization libraries for Android mobile applications. He
compares features like chart types and interaction possibilities as well as testing the performance
in regard to rendering time and memory usage for different datasets varying in size. While Os-
ebitz compared only Java-based libraries and this thesis focuses on web-based libraries, the
scenarios are somewhat similar. And both thesis assess a library which implements the process-
ing programming language where the same (scenario) code should be able to run on all covered
platforms.

4

CHAPTER 3
Method

In the first part of this section it is explained how the libraries are found and analyzed, following
an explanation on how the libraries are going to be compared.

3.1 Groundwork

First to find libraries for the comparision I used the two most popular search engines Google and
Bing [eBizMBA Inc., 2013] as well as the help of my advisor Bilal Alsallakh. Used keywords
were a combination of the following (as well as common abbreviations and different spellings):

• Library

• (Information) Visualization

• Javascript

• WebGL

• SVG

• Canvas

Libraries for plugins like Flash, Silverlight and Java are neglected, as are libraries for server-
sided technologies. After that step the remaining libraries were grouped by the basic technology
they use. Every library is then individually examined to explore the possibilities they provide.

Out of every category one library is then selected as a representative. The representatives
were then compared to each other using three scenarios.

3.2 Scenarios

To compare the different libraries three scenarios are used where each of this scenarios focus on
one of the following aspects: performance, interactivity, and extensibility

5

3.2.1 Performance

All libraries implement the parallel coordinates visualization which is created for five different
sizes from the data set: 250, 500, 1000, 2500 and 5000. The execution time needed by the
browser to initialize each of the visualization is recorded.

Figure 3.1: Example: Parallel Coordinates [Yug (via Wikimedia Commons), 2015]

This test is performed on different operating systems and devices. The test devices cover the
following:

• Desktops:

– Mac OS X (10.10.3) / Safari (8.0.5)
CPU: 2,3 GHz Intel Core i7
Memory: 16 GB 1600 MHz DDR3
GPU: NVIDIA GeForce GT 750M 2048 M

– Windows (7) / Internet Explorer (11)
CPU: 3.3 GHz Interl Core i5
Memory: 8 GB DDR3
GPU: AMD Radeon HD 6800 Series

– Linux (ArchLinux) / Chrome (43.0)
CPU: 3.4 GHz AMD A10-5700 Quad-Core
Memory: 8 GB 667 MHz DDR3
GPU: Radeon HD 7660D

• Tablets:

– Android (5.0.2) / Chrome (43)
CPU: 1.3 GHz quad-core Nvidia Tegra 3
Memory: 1 GB
GPU: ULP GeForce

6

– iPad Mini 2 (8.1.1) / Safari (8.1.1)
CPU: 1.3 GHz dual-core Apple Cyclone
Memory: 1 GB LPDDR3 DRAM
GPU: PowerVR G6430

– Windows (8.1) / Internet Explorer (11)
CPU: 1.7 GHz Intel Core i5
Memory: 4 GB 1600 MHzr DDR3
GPU: Intel HD Graphics 4000

• Smartphones:

– Android (5.0.2) / Chrome (42)
CPU: 2.2 GHz Qualcomm MSM8974 Quad Core
Memory: 2 GB RAM
GPU: Adreno 330

– iPhone 5 (8.1.2) / Safari (8.1.2)
CPU: 1.3 GHz dual core
Memory: 1 GB LPDDR2-1066 RAM
GPU: PowerVR SGX543MP3

– Windows Phone (8.1) / Internet Explorer (11)
CPU: 1.2 GHz quad core ARM Cortex-A7
Memory: 1 GB
GPU: Qualcomm Adreno 305

The subsets of data used for the performance evaluation are drawn from a public data set
which contains over 5000 entries of information about daily mortality, air pollution, and weather
data. [Department of Biostatistics, Johns Hopkins Bloomberg School Of Public Health, 2005]
Each entry consists of a date, the number of cardiocascular deaths, the mean monthly tempera-
ture in degrees Fahrenheit and the mean ozone level. The data was preprocessed for every library
so that necessary data transformation required by these libraries do not impact the measured ex-
ecution time.

3.2.2 Interaction & Animation

For this scenario the focus is on implementing a TreeMap visualization (Figure 3.2) and com-
paring what kind of interaction and animation options the libraries offer.

In case of the interaction possibilities special attention was paid to the kind of event handling
the libraries support:

• Low level
User Interface (UI) based Event (i.e the user clicks on a specific element)

• High level
Specific tasks (i.e the user highlights an element or move a node in a graph)

7

Figure 3.2: Example: TreeMap [Luc Girardin (via Wikimedia Commons), 2012]

The data set used for this scenario lists public earnings and expenditures of the city of Linz
(Austria) in 2012. [KDZ - Zentrum für Verwaltungsforschung, 2012] The data set contains
2160 entries, listing the amount of money and the specific areas. The data was preprocessed for
every library so that necessary data transformation required by these libraries do not impact the
measured execution time.

3.2.3 Extensibility

In the last scenario a new type of visualization had to be realised that is not already supported
out-of-the-box by the visualization library. So to test the extensibility of the libraries a polar area
diagram is created as displayed in Figure 3.3.

8

Figure 3.3: Example: Polar Area Diagram [Florence Nightingale (via Wikimedia Commons),
1858]

9

CHAPTER 4
Overview of the Surveyed Web-based

Visualization Technologies

This section provides an overview of the surveyed graphical libraries grouped by the technolo-
gies they used and gives a short description of each of these libraries. If a library supports
multiple technologies it still only appears in one section. The section is choosen based on the
keyword used to find the library via the search engines. 1 2 3

4.1 SVG

4.1.1 Fundamentals

Scaleable Vector Graphics (SVG) is a markup language for two-dimensional graphics. These
graphics can also be dynamic and allow interaction. SVG is an open standard and is designed
to work with other W3C specifications and standards efforts, like CSS, DOM and XML. [W3C,
2011]

As seen in figure 4.1 the browser support for SVG is pretty good. Modern desktop and
mobile browsers support this technology.

Compared to Canvas and WebGL the code for a SVG visualization can be generated on
server-side, so the client simply has to display the SVG without spending additional computa-
tional time for generating the visualization. As stated in [Kee et al., 2012] a downside of SVG
is that the developer can’t control when rendering occurs.

1Regarding not specified browser support: See the Browser Support Section of every technology to see the
supported versions.

2Regarding interaction: The library gets a checkmark for this section, if it supports some kind of interaction like
dragging, zooming, clicking and so on.

3Regarding events: Low-level events: This kind of event gets fired, if a user interacts with an element (like
clicking on an ui element). High-level events: Events, that get fired if a certain task is completed (like a node was
moved in the graph)

11

Figure 4.1: Browser Support SVG [caniuse.com, 2015b]

Legend
Green .. Full support
Olive .. Partial support (i.e. not supporting masking)
Red .. No support

4.1.2 Libraries

4.1.2.1 D3 - Data-Driven Documents

“D3.js is a JavaScript library for manipulating documents based on data. D3 helps you bring
data to life using HTML, SVG and CSS. D3’s emphasis on web standards gives you the full
capabilities of modern browsers without tying yourself to a proprietary framework, combining
powerful visualization components and a data-driven approach to DOM manipulation.” [Bo-
stock, Mike, 2013a]

4.1.2.2 Protovis

“Protovis composes custom views of data with simple marks such as bars and dots. Unlike low-
level graphics libraries that quickly become tedious for visualization, Protovis defines marks
through dynamic properties that encode data, allowing inheritance, scales and layouts to simplify
construction.” [Bostock, Mike, 2013b]

Superseeded by d3.js

12

Browser Support Only “modern browsers” specified
Line Charts X
Tree Maps X
Radial Diagrams X
Node-Link X
Number of sup-
ported chart types

Not specified - Framework for developing all kinds of
charts

Technologies SVG
Development sta-
tus

Active (Last activity: Jan. 2014)

License BSD 3-clause
Interaction X
Support of events Low-level: X, High-level: X

Table 4.1: D3.js Overview

Browser Support Only “modern browsers” specified
Line Charts X
Tree Maps X
Radial Diagrams X
Node-Link X
Number of sup-
ported chart types

Not specified - Framework for developing all kinds of
charts

Technologies SVG
Development sta-
tus

Inactive (Superseded by D3.js)

License BSD 2-clause
Interaction X
Support of events Low-level: X, High-level: X

Table 4.2: Protovis Overview

4.1.2.3 Raphaël

“Raphaël is a small JavaScript library that should simplify your work with vector graphics on the
web. If you want to create your own specific chart or image crop and rotate widget, for example,
you can achieve it simply and easily with this library.

Raphaël uses the SVG W3C Recommendation and VML as a base for creating graphics.
This means every graphical object you create is also a DOM object, so you can attach JavaScript
event handlers or modify them later. Raphaël’s goal is to provide an adapter that will make
drawing vector art compatible cross-browser and easy.” [Baranovskiy, Dmitry, 2013]

13

Browser Support Firefox 3.0+, Safari 3.0+, Chrome 5.0+, Opera 9.5+ and
Internet Explorer 6.0+.

Line Charts ×
Tree Maps ×
Radial Diagrams ×
Node-Link ×
Number of sup-
ported chart types

Not specified - Framework for developing all kinds of
charts

Technologies SVG
Development sta-
tus

Active (last activity: December 2013)

License MIT
Interaction X
Support of events Low-level: X, High-level: X

Table 4.3: Raphaël Overview

4.1.2.4 Bonsai

“Bonsai is a graphics library which includes an intuitive graphics API and an SVG renderer.”
[uxebu, 2013]

Browser Support Safari 5+, Chrome 20+, Firefox 18+, Opera 12+, IE 9+
Line Charts ×
Tree Maps ×
Radial Diagrams ×
Node-Link ×
Number of sup-
ported chart types

Not specified - Framework for developing all kinds of
charts

Technologies SVG
Development sta-
tus

Active (last activity: November 2013)

License MIT
Interaction X
Support of events Low-level: X, High-level: ×

Table 4.4: Bonsai Overview

14

4.1.2.5 Vega

“Vega is a visualization grammar, a declarative format for creating, saving and sharing visual-
ization designs.

With Vega you can describe data visualizations in a JSON format, and generate interactive
views using either HTML5 Canvas or SVG.” [Trifacta Inc., 2013]

Browser Support Not specified.
Line Charts ×
Tree Maps X
Radial Diagrams ×
Node-Link X
Number of sup-
ported chart types

8

Technologies Canvas, SVG
Development sta-
tus

Active (last activity: October 2013)

License BSD 3-caluse
Interaction X
Support of events Low-level: X, High-level: ×

Table 4.5: Vega Overview

4.2 Canvas

4.2.1 Fundamentals

The canvas element is part of the HTML5 specification and provides a bitmap canvas. Through
scripting it is possible to dynamically create two-dimensional shapes and bitmap images. [W3C,
2014b]

Like SVG the browser support for canvas is very good. All relevant modern desktop and
mobile browser support this technology. (See figure 4.2)

Compared to SVG the developer has control over when rendering should occur, also the
performance is better. [Kee et al., 2012]

4.2.2 Libraries

4.2.2.1 Processing.js

“Processing.js is the sister project of the popular Processing visual programming language, de-
signed for the web. Processing.js makes your data visualizations, digital art, interactive anima-
tions, educational graphs, video games, etc. work using web standards and without any plug-ins.

15

Figure 4.2: Browser Support Canvas [caniuse.com, 2015a]

Legend
Green .. Full support
Olive .. Partial support (i.e. unable to play animations

or run other more complex applications)
Red .. No support

You write code using the Processing language, include it in your web page, and Processing.js
does the rest.” [Processing.js team, 2013]

Browser Support Not specified.
Line Charts ×
Tree Maps ×
Radial Diagrams ×
Node-Link ×
Number of sup-
ported chart types

Not specified - Framework for developing all kinds of
charts

Technologies Canvas
Development sta-
tus

Active (last activity: November 2013)

License MIT
Interaction X
Support of events Low-level: X, High-level: ×

Table 4.6: Processing.js Overview

16

4.2.2.2 sigma.js

“sigma.js is an open-source lightweight JavaScript library to draw graphs, using the HTML
canvas element. It has been especially designed to:

Display interactively static graphs exported from a graph visualization software - like Gephi
Display dynamically graphs that are generated on the fly” [Alexis Jacomy, 2013]

Browser Support Safari 5+, Chrome 20+, Firefox 18+, Opera 12+, IE 9+
Line Charts ×
Tree Maps ×
Radial Diagrams ×
Node-Link X
Number of sup-
ported chart types

1

Technologies Canvas
Development sta-
tus

Active (last activity: July 2013)

License MIT
Interaction X
Support of events Low-level: X, High-level: X

Table 4.7: sigma.js Overview

4.2.2.3 canvasXpress

“CanvasXpress was developed as the core visualization component for bioinformatics and sys-
tems biology analysis at Bristol-Myers Squibb. It supports a large number of visualizations to
display scientific and non-scientific data. CanvasXpress also includes a standalone unobtrusive
data table and a filtering widget to allow data exploration similar to those only seen in other
high-end commercial applications.” [Isaac Neuhaus, 2013]

4.3 WebGL

4.3.1 Fundamentals

WebGL is a rendering API for (hardware-accelerated) 3D graphics and is designed as a rendering
context for the canvas element. The API is derived from OpenGL ES 2.0 specification. [Khronos
Group, 2015]

17

Browser Support Firefox 1.5+, Opera 9+, Safari 3+, Chrome 1+, IE 6+
Line Charts X
Tree Maps X
Radial Diagrams ×
Node-Link ×
Number of sup-
ported chart types

22

Technologies Canvas
Development sta-
tus

Active

License GPLv3
Interaction X
Support of events Low-level: X, High-level: ×

Table 4.8: canvasXpress Overview

WebGL has the worst browser support of the three technologies. Firefox and Opera have
only a partial support and Safari and Internet Explorer only support WebGL in their latest ver-
sion. From the popular mobile browsers only iOS Safari and IE Mobile support WebGL in the
latest versions. Mobile Chrome and the Android Browser for Android 5.x have only partial sup-
port, the Android Browser up until Android 4.4.4 does not support WebGL at all. (see figure
4.3)

Since WebGL leverages hardware acceleration it obviously provides the best performance.
It is also the only technology of the three mentioned that support 3D. But on the other hand
developing WebGL visualizations is more elaborating. [Kee et al., 2012]

4.3.2 Libraries

4.3.2.1 JavaScript InfoVis Toolkit

“The JavaScript InfoVis Toolkit provides tools for creating Interactive Data Visualizations for
the Web.” [Sencha Labs, 2013]

4.3.2.2 Superconductor

“Superconductor is a web framework for creating data visualizations that scale to real-time in-
teractions with up to 1,000,000 data points. It compiles to WebCL, WebGL, and web workers
to unleash the power of parallel hardware for fast and cross-platform data visualization.” [The
Superconductor Team, 2013]

18

Figure 4.3: Browser Support WebGL [caniuse.com, 2015c]

Legend
Green .. Full support
Olive .. Partial support (i.e. not all users

with these browsers have WebGL access)
Red .. No support

4.3.2.3 Fluiddiagrams

“FluidDiagrams is a cross-platform, web-based information visualisation framework using JavaScript
and WebGL.” [Wright, Benedict, 2014]

19

Browser Support Not specified.
Line Charts ×
Tree Maps X
Radial Diagrams X
Node-Link X
Number of sup-
ported chart types

10

Technologies WebGL, Canvas
Development sta-
tus

Active (Last activity: January 2014)

License MIT
Interaction X
Support of events Low-level: X, High-level: ×

Table 4.9: JavaScript InfoVis Toolkit Overview

Browser Support Not specified.
Line Charts ×
Tree Maps X
Radial Diagrams ×
Node-Link ×
Number of sup-
ported chart types

Not specified - Framework for developing all kinds of
charts

Technologies WebGL
Development sta-
tus

Active (Last activity: November 2013)

License BSD 3-clause
Interaction X
Support of events Low-level: X, High-level: ×

Table 4.10: Superconductor Overview

20

Browser Support Not specified.
Line Charts X
Tree Maps ×
Radial Diagrams ×
Node-Link X
Number of sup-
ported chart types

Not specified - Framework for developing all kinds of
charts

Technologies WebGL
Development sta-
tus

Inactive (Last activity: 2013)

License MIT
Interaction X
Support of events Low-level: X, High-level: X

Table 4.11: Superconductor Overview

21

CHAPTER 5
Comparison

5.1 1st Scenario

5.1.1 SVG

Figure 5.1: 1st Scenario using SVG

23

Chrome Safari Internet Explorer
250 24ms 8ms 21ms
500 32ms 10ms 36ms

1000 44ms 13ms 41ms
2500 88ms 23ms 80ms
5000 197ms 42ms 146ms

Table 5.1: Results from first scenario using SVG in desktop browsers

Chrome Safari Internet Explorer
250 185ms 31ms 81ms
500 218ms 48ms 109ms

1000 364ms 56ms 121ms
2500 799ms 95ms 200ms
5000 1703ms 167ms 273ms

Table 5.2: Results from first scenario using SVG in tablet browsers

Chrome Safari Internet Explorer
250 104ms 87ms 173ms
500 160ms 124ms 236ms

1000 242ms 170ms 334ms
2500 488ms 234ms 702ms
5000 1066ms 343ms 1318ms

Table 5.3: Results from first scenario using SVG in smartphone browsers

24

5.1.2 Canvas

Figure 5.2: 1st Scenario using Canvas

Chrome Safari Internet Explorer
250 7ms 4ms 4ms
500 9ms 6ms 6ms

1000 15ms 9ms 10ms
2500 30ms 19ms 24ms
5000 45ms 59ms 50ms

Table 5.4: Results from first scenario using Canvas in desktop browsers

Chrome Safari Internet Explorer
250 63ms 23ms 10ms
500 68ms 31ms 16ms

1000 118ms 49ms 26ms
2500 230ms 107ms 35ms
5000 437ms 191ms 74ms

Table 5.5: Results from first scenario using Canvas in tablet browsers

25

Chrome Safari Internet Explorer
250 65ms 39ms 35ms
500 71ms 59ms 105ms

1000 161ms 94ms 158ms
2500 260ms 227ms 275ms
5000 377ms 332ms 499ms

Table 5.6: Results from first scenario using Canvas in smartphone browsers

26

5.1.3 WebGL

Figure 5.3: 1st Scenario using WebGL

Chrome Safari Internet Explorer
250 196ms 125ms 211ms
500 269ms 161ms 263ms

1000 399ms 217ms 374ms
2500 843ms 466ms 740ms
5000 1425ms 916ms 1360ms

Table 5.7: Results from first scenario using WebGL in desktop browsers

Chrome Safari Internet Explorer
250 1151ms 316ms 478ms
500 1702ms 444ms 604ms

1000 2944ms 759ms 716ms
2500 8244ms 2637ms 1336ms
5000 25048ms 4818ms 2346ms

Table 5.8: Results from first scenario using WebGL in tablet browsers

27

Chrome Safari Internet Explorer
250 962ms 524ms 2903ms
500 1199ms 789ms 3261ms

1000 1967ms 1058ms 4625ms
2500 3818ms 2254ms 10204ms
5000 6663ms 3730ms 19122ms

Table 5.9: Results from first scenario using WebGL in smartphone browsers

28

5.1.4 Summary

Figure 5.4: SVG Results of the 1st Scenario

Figure 5.5: Canvas Results of the 1st Scenario

The Canvas implementations are nearly always the fastest, SVG comes in second and We-
bGL in last. While SVG is only a little slower, I suspect the gap of WebGL comes from the
overhead of a 3D API used in a 2D way only and the architecture of the Fluiddiagrams library.

In regard to the browsers Safari seems to be the fastest across all devices and across all
technologies. Especially using SVG and larger data sets Safari outdistance the other browsers.
Using Canvas technology the Internet Explorer is sometimes slightly faster than Safari.

5.2 2nd Scenario

5.2.1 SVG

D3.js provides low-level mouse/touch and keyboard-based events and, depending on the used
layout, high-level events as well. Because SVG is build upon the Document Object Model most

29

Figure 5.6: WebGL Results of the 1st Scenario

Figure 5.7: 2nd Scenario using SVG

events can be mapped directly to a single element, so matching clicked elements - and thanks to
D3.js also the associated data - is really easy.

To animate a chart the library provides a transition() module. You can either specify a custom
tween function, or use the module to interpolate the value of a specific attribute. This makes it
very easy and straight forward to orchestrate a series of sub-animations to became a whole.

30

5.2.2 Canvas

Figure 5.8: 2nd Scenario using Canvas

Processing.js provides only mouse/touch-based and keyboard-based events. For example if
you want to get an element which was clicked, you have to match the coordinates of the current
mouse position with the bounds of the element yourself.

The library executes the draw() function in a loop. This can be used to animate the visualiza-
tion. If no animation is needed the noLoop() function can be used so the draw() function is only
called once. You have to track the animation progress yourself and adapt the draw() function
accordingly.

31

5.2.3 WebGL

Figure 5.9: 2nd Scenario using WebGL

Like D3.js Fluiddiagrams provides low-level events and high-level ones depending on the
layout. But unlike D3.js it is not that simple to map single chart elements to a mouse click.
Theoretically you would only have to connect the data to the according mesh and Fluiddiagrams
would assign this information to the event callback. But there seems to be a bug in this procedure
and the wrong data is supplied.

Animation in Fluiddiagrams is done with the tween.js library. This library calls a custom
function every few milliseconds for a specified duration and provides a set of interpolated values
which can be used to repaint the canvas area.

5.3 3rd Scenario

5.3.1 SVG

With only 88 lines of code the SVG implementation with D3.js has the smallest footprint. This
library provides an excellent documentation and a large number of examples. There are also a
vast number of helper functions, like range converter, built in to assist in the implementation.
Compared to the other two implementations, this one took the least amount of time to be build.

32

Figure 5.10: 3rd Scenario using SVG

33

5.3.2 Canvas

Figure 5.11: 3rd Scenario using Canvas

This implementation consists of 165 lines of code. Because Processing.js is a port of the
programming language Processing, a large number of tutorials and examples - not specifically
made for Processing.js - could be used to help create visualizations. In the beginning using
Processing seemed a bit peculiar but soon it became very straight forward to create the chart in
a short time.

34

5.3.3 WebGL

Figure 5.12: 3rd Scenario using WebGL

For the implementation of the 3rd Scenario I produced 204 lines of code. The Documentation
for the Library is good, but compared to the SVG and Canvas libraries there are only a few
tutorials/examples available. Fluiddiagrams has the steepest learning curve of the three libraries,
but the framework provides a good structure for implementing clean and reusable extensions.

35

CHAPTER 6
Conclusion

This thesis gives a short overview of different libraries using different technologies for imple-
menting charts with a special focus on mobile devices.

All selected libraries run without a problem on mobile devices, but vary in their runtime
performance, with Canvas being faster than the other two. Even if an SVG visualization could
became a problem to the browser because every part of a chart is a node in the Document
Object Model, the flexibility of D3.js and the ease with which one can create a new visualization
outweights this problem in most cases. Also making a visualization accessible is more easy with
SVG than Canvas or WebGL. The WebGL Library Fludidiagrams may not be as fast as the other
libraries, but would also provide the possibilities to create true 3D charts.

Each of the tested libraries support animation and some kind of interaction with the visual-
ization. Also with all of these libraries it is possible to extend them and create new charts.

In further work additional libraries could be tested to get a more comprehensive overview.
Furthermore other aspects could be included in the overview, for instance accessibility.

37

Bibliography

Adobe (2015). http://www.adobe.com/products/flash.html. Adobe Flash. Access: 2015-10-28.

Alexis Jacomy (2013). http://sigmajs.org/. sigma.js. JavaScript library to draw graphs. Accessed:
2013-12-04.

Baranovskiy, Dmitry (2013). http://raphaeljs.com/. Raphaël - JavaScript Library. Accessed:
2013-12-04.

Bostock, Mike (2013a). http://d3js.org/. D3 - Data-Driven Documents. Accessed: 2013-12-04.

Bostock, Mike (2013b). http://mbostock.github.io/protovis/. Protovis. A graphical approach to
visualization. Accessed: 2013-12-04.

caniuse.com (2015a). http://caniuse.com/#feat=canvas. Accessed: 2015-05-01.

caniuse.com (2015b). http://caniuse.com/#feat=svg. Accessed: 2015-05-01.

caniuse.com (2015c). http://caniuse.com/#feat=webgl. Accessed: 2015-05-01.

Department of Biostatistics, Johns Hopkins Bloomberg School Of Public Health (2005).
http://www.ihapss.jhsph.edu/. Internet-based Health & Air Pollution Surveillance System.
Access: 2015-05-07.

Dragland, Åse (2013). http://www.sintef.no/home/corporate-news/big-data–for-better-or-
worse/. Big Data – for better or worse. Accessed: 2015-05-03.

eBizMBA Inc. (2013). http://www.ebizmba.com/articles/search-engines. Top 15 Most Popular
Search Engines | December 2013. Accessed: 2013-12-04.

Florence Nightingale (via Wikimedia Commons) (1858).
http://commons.wikimedia.org/wiki/File:Nightingale-mortality.jpg. Accessed: 2015-05-
01.

Iliinsky, Noah (2012). http://blog.visual.ly/why-is-data-visualization-so-hot/. Why Is Data Vi-
sualization So Hot? Accessed: 2015-05-03.

Isaac Neuhaus (2013). http://canvasxpress.org/. canvasXpress. A powerful canvas graphing
utility. Accessed: 2013-12-04.

39

Jobs, Steve (2010). https://www.apple.com/hotnews/thoughts-on-flash/. Thoughts on Flash.
Access: 2015-05-03.

Johnson, D. W. and Jankun-Kelly, T. J. (2008). A scalability study of web-native information
visualization. In Proceedings of Graphics Interface 2008, GI ’08, pages 163–168, Toronto,
Ont., Canada, Canada. Canadian Information Processing Society.

KDZ - Zentrum für Verwaltungsforschung (2012). http://www.offenerhaushalt.at/download/finanzdaten/top/linz/2012.
Eingaben/Ausgaben der Stadt Linz 2012. Access: 2015-05-07.

Kee, D. E., Salowitz, L., and Chang, R. (2012). Comparing interactive web-based visualization
rendering techniques.

Kemp, Simon (2015). http://wearesocial.net/blog/2015/01/digital-social-mobile-worldwide-
2015/. Digital, Social & Mobile Worldwide in 2015. Access: 2015-05-03.

Khronos Group (2015). https://www.khronos.org/registry/webgl/specs/latest/1.0/. WebGL
Specification. Access: 2015-05-03.

Lammarsch, T., Aigner, W., Bertone, A., Gärtner, J., Miksch, S., and Turic, T. (2008). A com-
parison of programming platforms for interactive visualization in web browser based applica-
tions. In Banissi, E., Stuart, L., Jern, M., Andrienko, G., Marchese, F. T., Memon, N., Alhajj,
R., Wyeld, T. G., Burkhard, R. A., Grinstein, G., Groth, D., Ursyn, A., Maple, C., Faiola,
A., and Craft, B., editors, Proceedings of 12th International Conference on Information Vi-
sualisation (IV08), page 194–199. IEEE Computer Society Press, IEEE Computer Society
Press. <p>Vortrag: 12th International Conference on Information Visualisation (IV08), Lon-
don, UK; 2008-07-09 – 2008-07-11</p>.

Levkowitz, H. and Kelleher, C. (2012). Cloud and mobile web-based graphics and visualization.
In Graphics, Patterns and Images Tutorials (SIBGRAPI-T), 2012 25th SIBGRAPI Conference
on, pages 21–35.

Luc Girardin (via Wikimedia Commons) (2012). http://commons.wikimedia.org/wiki/File:US_Presidential_Elections_2012.png.
Accessed: 2015-05-01.

MDN (2015). https://developer.mozilla.org/en-us/docs/web/javascript. JavaScript. Access:
2015-10-28.

Moelker, R. R. and Wijbrandi, W. E. (2012). Html5 data visualization capabilities of mobile
devices. In Proceedings 9th Student Colloquium 2011-2012, pages 23–28.

Oracle (2015a). https://www.java.com/en/download/faq/java_mobile.xml. How do I get Java for
Mobile device?. Access: 2015-05-03.

Oracle (2015b). https://www.oracle.com/java/index.html. Java. Access: 2015-10-28.

Osebitz, C. (2015). State of the art in java-based information visualization on mobile devices.
Bachelor’s Thesis.

40

Processing.js team (2013). http://processingjs.org/. Processing.js. A port of the Processing
Visualization Language. Accessed: 2013-12-04.

Sencha Labs (2013). http://philogb.github.io/jit/. JavaScript InfoVis Toolkit. Create Interactive
Data Visualizations for the Web. Accessed: 2013-12-04.

The Superconductor Team (2013). http://superconductor.github.io/superconductor/. Supercon-
ductor. Bit Data visualization for the web. Accessed: 2013-12-04.

Trifacta Inc. (2013). http://trifacta.github.io/vega/. Vega. Accessed: 2013-12-04.

uxebu (2013). http://bonsaijs.org/. Bonsai. A lightweight graphics library with an intuitive
graphics API and an SVG renderer.. Accessed: 2013-12-04.

van Tonder, B. and Wesson, J. (2008). Using adaptive interfaces to improve mobile map-based
visualisation. In Proceedings of the 2008 Annual Research Conference of the South African
Institute of Computer Scientists and Information Technologists on IT Research in Developing
Countries: Riding the Wave of Technology, SAICSIT ’08, pages 257–266, New York, NY,
USA. ACM.

W3C (1999). http://www.w3.org/tr/html4/. HTML 4. Access: 2015-10-28.

W3C (2011). http://www.w3.org/tr/svg11/intro.html. Scaleable Vector Graphics (SVG) Speci-
fication. Access: 2015-05-03.

W3C (2014a). http://www.w3.org/tr/html5/. HTML5. Access: 2015-10-28.

W3C (2014b). http://www.w3.org/tr/html5/semantics.html#the-canvas-element. HTML5 Spec-
ification. Access: 2015-05-03.

W3C (2015). http://www.w3.org/tr/css/. CSS. Access: 2015-10-28.

Wright, Benedict (2014). http://projects.iicm.tugraz.at/fluiddiagrams/. FluidDiagrams. Ac-
cessed: 2015-05-01.

Yug (via Wikimedia Commons) (2015). http://commons.wikimedia.org/wiki/File:Parallel_coordinates-
sample.png. Accessed: 2015-05-01.

41

	Introduction
	Related Work
	Information visualization using web standards
	Information visualization on mobile devices

	Method
	Groundwork
	Scenarios

	Overview of the Surveyed Web-based Visualization Technologies
	SVG
	Canvas
	WebGL

	Comparison
	1st Scenario
	2nd Scenario
	3rd Scenario

	Conclusion
	Bibliography

