
Programm architecture

AsbruFlow
Interactive Information Visualization to

Support Protocol-based Care

Stephan Hoffmann
0325733

November 5, 2008



1 Introduction

The aim of this project was to develop a interactive visualization toolkit to
support protocol-based care. Based on the Software Prototype CareVis, this
project is a approach to communicate the complex logic of Asbruplans to do-
main experts like physicians or nursing staff. Asbru can be used to express
clinical protocols as skeletal plans that can be instantiated for every patient.
Since a plan is modeled in XML, this representation is not well suited for
physicians.
To illustrate an Asbruplan, it is neccessary to display different types of data:
logical sequences, time-oriented data, flexible execution order, non-uniform
element types and state characteristics of conditions.
AsbruFlow meets this requirements providing multiple views and using visu-
alization methods well-known to domain experts. The tightly coupled views
are based on the concepts of clinical algorithm maps and LifeLines.
This project was developed with JDK 1.6, Prefuse beta (release 2007.10.20)
toolkit and the TimeVis API developed by Peter Weishapl.

2 Prefuse

Prefuse is a open source java-based toolkit designed to visualize connected
information in form of graphs or trees. Additionally, prefuse offers some in-
teraction techniques like Tooltips, dragging of visual elements, zooming and
panning.
Prefuse is based on the information visualization refernce model shown be-
low, which breaks up a information visualization process into different steps.

The next figure below illustrates how the different classes of the prefuse
toolkit implement the reference model:

1



3 LogicalView

The LogicalView shows the logical sequences, hierarchical decomposition,
non-uniform element types and conditions of an Asbru plan.
There are 2 different modes for this view, a Overview + Detail Mode and a
FishEyeMode.

3.1 Overview + Detail Mode

This mode uses a small window containing a downscaled, simplied tree overview
where the current position within the plan is highlighted. The current ex-
panded plan is displayed in the LogicalPlanViewPanel in an enclosing frame.
If a plan within this enclosing frame gets expanded by the user (by clicking
on the triangle), this plan gets displayed in the enclosing frame.
The planbody is visualized with prefuse. The mapping to the InfoVis Pipeline
and which prefuse classes are utilised in this visualization is shown below.

2



The class AsbruReader, which is a XML Parser for Asbru files, creates a Sin-
gleStepGraph consisting of SingleSteps connected with SingleStepRelations.
The visual representations of this graph is a VisualGraph consisting of the vi-
sual representations of SingleSteps and SingleStepRelations : PlanNodes and
PlanEdges. These visual elements get visualized by the LogicalVisualization,
applying a FullLogicalLayout on them, does some coloring and is responsible
for the animations.

3



The actual rendering of the planbody happens in the LogicalDisplay, using a
couple of different renderers, depending of the element type. The display hold
some ControllListeners for user-interaction(zooming, panning, dragging) and
also a special ExpandedStateToggler to recognize selection or expanding of a
plan.

The simplied tree overview is also visualized with prefuse, the architecture is
shown below.

Since this visualization only displays the plantree without other elements
such as ask, if-then-else assignments,.., a OverviewGraphCreator is respon-
sible for the creation of the SingleStepGraph. This visualization is much
simpler than the detailed visualization, so the standard prefuse renderers

4



and layout-algorithm are adequate. The OverviewDisplay also has a Ex-
pandedStateToggler that recognises clicks on the nodes.

3.2 Fisheye Mode

The current (sub)plan represents the focus which is displayed in full detail.
The surrounding (context) elements are shrunk and displayed with less detail.

The architecture of this visualization looks nearly the same as the de-
tail visualization in the O+D mode, the only difference is the usage of the
FishEyeLogicalLayout for element positioning and the PlanRenderer instead
the standard prefuse LabelRenderer. This is necessary because in this mode,
a (sub)plan cannot only be expanded or selected, but also opened.
This mode needs 3 displays, each for every opened plan. The backmost plan-
body is displayed in a LogicalFishEyeDisplay domiciled in a FilledLayered-
Pane in the backmost layer. If a plan gets opened in this display, a JPanel
gets displayed on the next Layer, which contains the enclosing frame of the
opened plan. This plan’s body in turn is displayed in a LogicalFishEyeDis-
play domiciled in a FilledLayeredPane in the backmost layer again. The next
opened plan’s enclosing frame is held in a JPanel again, the foremost Logi-
calFishEyeDisplay domiciled in a normal JPanel.

5



The size and position of the panels above the backmost layer is decided
by the FishEyeLogicalLayout in the visualization one layer behind.

4 Overall architecture

The main class of the programm is derived from JFrame, this class creat-
ing the viewpanels for the LogicalView. Either LogicalFishEyeViewPanel or
LogicalPlanViewPanel, in this case also creating a JInternalFrame for the
overview display.
It also creates a JPanel for the temporal view, containing a prefuse display
for the illustration of an Asbruplan. The architecture for this visualization
is nearly the same as in the TimeVis Prototype and can be read there.

6



As can be seen, a EventRouter is instantiated in the main class too. The
EventRouter is responsible to couple the logical and temporal view. E.g.
a plan gets selected in one view, this event is sent to the EventRouter, who
routes this event to the other view. Also double-clicking plans or dragging it
to another view is supported.

7


