
Bachelor Thesis

TimeVis
Visualizing Temporal Data using prefuse

ausgeführt am Institut für
Softwaretechnik und Interaktive Systeme
an der Technischen Universität Wien

von
Peter Weishapl

0304333

Wien, im März 2007

Contents
1 Introduction 3

1.1 PlanningLines . 3
1.2 From PlanViewer to TimeViewer 4

2 Information Visualization 6
2.1 Data, Information and Visualization 7
2.2 Displaying Data: The InfoVis Pipeline 7
2.3 prefuse . 8

3 TimeVis API 9
3.1 Timescales . 9
3.2 Time Units . 11
3.3 Using TimeVis . 12

4 TimeViewer Prototype 13
4.1 User Interface . 13
4.2 Implementation . 15

5 Conclusions 16
5.1 On prefuse . 16
5.2 On TimeVis . 17
5.3 On TimeViewer . 18

References 20

2

1 Introduction
The aim of this thesis was to extend and generalize PlanViewer, a Software
Prototype applying PlanningLines [2] to MS-Project and Asbru plans. As Plan-
Viewer has been generalized to not only visualize plans, but any kind of tem-
poral information, and to emphasise the difference between the old PlanViewer
and the new, extended version, the new prototype is called TimeViewer. As a
byproduct of TimeViewer an API called TimeVis has been developed. TimeVis
enables developers to quickly develop applications that need to display any kind
of temporal information. Both, TimeVis and TimeViewer have been developed
using Java Swing, Java 2D and prefuse. Though one goal was to evaluate
prefuse, as to find out how well it could be used to visualize temporal data,
TimeVis has been designed to be as independent as possible from prefuse, so
that it could be used with anything built on Java 2D and Java Swing. This
however doesn’t mean that TimeVis will work “out of the box” with anything
except prefuse, but it should be pretty easy to adapt, as the dependence on
prefuse has been kept to a minimum.

1.1 PlanningLines
PlanningLines is a visualization technique that allows for representing temporal
uncertainties and aims at supporting project managers in their difficult planning
and controlling tasks. A PlanningLine is essentially a glyph used to visualize an
interval, for example an activity in a project schedule. PlanningLines therefore
extend the concept of GANTT charts1 by providing visualization not only for
starting and finishing time of an activity, but for:

• start interval

– earliest starting time [EST]

– latest starting time [LST]

• end interval

– earliest finishing time [EFT]

– latest finishing time [LFT]

• duration

– minimum duration [minDu]

– maximum duration [maxDu]

You can see an example of a PlanningLine in Figure 1.
Though PlanningLines work well with GANTT charts, they can be used

to visualize future activities in any context. A popular example are medical
treatment plans. [3]

1See http://en.wikipedia.org/wiki/Gantt_chart (accessed on April 30th, 2007)

3

Figure 1: Example of a PlanningLine

1.2 From PlanViewer to TimeViewer
The goal of the PlanViewer application was to prove the concept of Planning-
Lines in a real application. Another aim of the thesis was the evaluation of
open-source toolkits intended for Information Visualization regarding their op-
erability in the domain. Toolkits used in the PlanViewer prototype are the
InfoVis and prefuse toolkits. [5] Figure 2 shows a screenshot of the PlanViewer
prototype.

Figure 2: PlanViewer Prototype

As mentioned before, the goal of this thesis was to enhance the existing
PlanViewer ; particularly the following requirements should be met:

4

• Provide an Overview Plus Detail2 interface, whereas the overview provides
a Range Slider control3 to navigate (pan and zoom) on the detail view. See
figure 3, where the detail view is displayed in the top and the overview in
the bottom part of the window. The overview also incorporates the Range
Slider control, which is placed to focus the detail view on "Sub Task D".
The Overview Plus Detail pattern has the advantages that the user can
always see the whole plan in the overview, while looking at the details in
the detail view. The Range Slider lets the user see at a glance which part
of the whole plan is displayed in the detail view. Changing the detail view
with the entire plan on view is also preferable to change the detail view
without knowing where we are and what’s outside the current view.

• Provide a Fisheye View for the temporal axis and enable the user to
adjust the fisheye intensity and eventually to turn the fisheye on and off.
A Fisheye View shows an area of interest near a focus point quite large,
whereas the area far away from the focus point is shown in less detail.
You can see an example of a Fisheye View in figure 3 in the detail view,
where the focus point lies in the center and the time around the February
26 is shown in greatest detail.4

• Make it possible to visualize multiple plans beneath each other, so that
it’s easy for the user to compare them.

• The interaction and navigation, especially the toolbar, needs to be im-
proved in order to enhance usability.

• It should be possible to search for activities.

• Extract a (TimeVis) API from the TimeViewer prototype to make it
easy for developers to build applications with Java Swing and prefuse to
visualize any kind of temporal information.

Instead of advancing the existing PlanViewer prototype, it has been rewritten
from scratch. Though a couple of routines and lots of ideas have been copied
or taken over from the existing prototype, rewriting was considered superior to
advancing, due to the following reasons:

• PlanViewer has been written using an alpha version prefuse. Time has
gone by and by the time of writing this thesis there is already a beta
version of prefuse available. The alpha version not only has more bugs
and a worse design, it also is outdated and not supported anymore, which
means that the beta version is seminal and the alpha not. Besides nobody
wants to learn an outdated technology, so the beta version is the way to
go.

• PlanViewer uses the InfoVis library, which may be great, but in this
context it’s simply not necessary. It has been in PlanViewer since it’s

2Also referred to as overview-detail in this thesis. See [6] for a description of this user
interface design pattern.

3A Range Slider is a control that lets you input two values, an upper and a lower bound.
In our case the bounds are dates lying within the bounds of the overview.

4For more information on Fisheye Views see http://www.infovis-
wiki.net/index.php/Fisheye_View (accessed on April 30th, 2007)

5

early versions and has later been considered dispensable, but actually it
has never been eliminated. Rewriting avoids the need to get rid of the
InfoVis library.

• PlanViewer has a very interweaved class structure, which means that de-
pendencies between classes and packages are very numerous and undi-
rected and therefore hard to grasp. There are also a lot of static methods
in these classes and even classes with static methods only. Furthermore
there are a lot of relics, like InfoVis, which have never been removed or
refactored. These all factors make it very hard to change, extend or even
understand the program code. Rewriting avoids this burden.

Figure 3: TimeViewer prototype

2 Information Visualization
Information Visualization is the scientific discipline to display ab-
stract data in a useful, clear, and comprehensible way.5

This sentence captures 3 important terms that need to be understood to under-
stand how Information Visualization works: data, information and visualiza-
tion. These terms will be described in this chapter and lay the foundation for
understanding of how the process of Information Visualization works in visu-
alization software, namely how to design software to display data in “a useful,
clear and comprehensive way”. Moreover, how prefuse facilitates this process.

5see [5] on page 34

6

2.1 Data, Information and Visualization
In general, data is just a representation of something - numbers, letters, and
dates, anything - suitable for communication, interpretation or processing. Which
means data has no meaning; someone must interpret it. So interpreting is essen-
tially assigning meaning to data. That’s where information comes in. Informa-
tion is data with an associated meaning. Assigning meaning to data is possible
through interpreting data in a particular context. A combination of letters can
be a description of a task; a combination of dates can be the interval in which
the task should be executed.

Information Visualization is the process of displaying data to enable view-
ers to see, browse and understand the information. An important aspect of
Information Visualization in computer programs is interactivity. Viewers do
not only view, but also interact with the program. They not only need to be
able to explore and search data and information, but also to accommodate the
visualization to their current needs, for instance to zoom in to reach more details
or zoom out to gain a broader view, highlight important aspects or expand and
collapse composite data structures or even change the whole appearance of the
visualization, like switching from 2D to 3D view or simply changing colors.

Developing software that fulfills these requirements is a complex task. A
lot of research has been made in this area and different techniques for visu-
alizing data and information has been developed. The technique used in the
TimeViewer and PlanViewer projects is called the Information Visualization
Reference Model also known as InfoVis Pipeline.

2.2 Displaying Data: The InfoVis Pipeline
The InfoVis Pipeline is a software architecture pattern that breaks up the pro-
cess of Information Visualization into a series of discrete steps. Each step utilises
the results of the previous step to eventually transform raw data into a concrete
visualization. This process is illustrated in Figure 4.

Figure 4: The InfoVis Pipeline. Source data is mapped into data tables that
back a visualization. These backing data tables are then used to construct a visual
abstraction of the data, modeling visual properties such as position, color, and
geometry. The visual abstraction is then used to create interactive views of the data,
with user interaction potentially affecting change at any level of the framework. [1]

The first step is to load the data and therefore transform any proprietary for-
mat into a generic, table like structure called data tables. The source data can be

7

in any format, but after the transformation the data is essentially transformed
into a collection of tables (or matrices) with rows, columns, and values poten-
tially representing references to other tables to support more complex structures
like graphs and trees.

Through visual mappings, visual abstractions are then created, a data model,
which refers to the original data tables and includes visual features like color,
size, position, or shape. The visual abstractions include all information neces-
sary to render the data.

The actual rendering is done after view transformations. This step is nec-
essary for instance to support panning or zooming, which in turn modifies the
size and position of the visual abstractions for correct rendering according to
the current view.

User interaction is supported at any step in this process. For example, the
user could pan a view through a Scroll Bar, therefore modifying the view. The
user interface could also provide a search facility that could highlight items by
changing its color, therefore modifying the visual abstractions of the found data
items.

2.3 prefuse6

prefuse is an implementation of the InfoVis Reference Model or -Pipeline men-
tioned above. It’s built on Java Swing and Java2D. Figure 5 shows the relations
between prefuse and the InfoVis Pipeline.

Figure 5: The prefuse package guide depicting prefuse packages and classes and
their relations to the InfoVis Pipeline [1]

The prefuse.data package provides Table, Graph, and Tree classes for repre-
senting data. Table rows are represented by the Tuple interface, while the Node
and Edge interfaces represent the members of graph and tree structures. The
Graph and Tree classes are implemented using Table instances to store the node

6see prefuse.org

8

and edge data. These data structures match to data tables mentioned in chapter
2.2. The prefuse.data.io package provides classes for reading and writing table,
graph, and tree data from formatted files.

The Visualization class acts as the visual abstraction as described above.
For any Tuple, Node, or Edge added to the Visualization, a corresponding Visu-
alItem, NodeItem, or EdgeItem instance is created. These classes, found in the
prefuse.visual package, extend the Tuple interface and provide access to both
the visual attributes and the underlying data.

The visual mappings (see chapter 2.2) are performed through Action classes
located in the prefuse.action package. These classes manipulate properties of
VisualItems like visibility, position, size and color. Subclasses of Actions are
typically layouts, animators or highlighters. A number of prebuilt implementa-
tions can be found in the prefuse.action package and it’s sub-packages. Actions
can be combined sequentially as in a ActionList to support flexibility of visual-
izations and reusability of Action implementations.

The prefuse.render package contains Renderers, which read the properties
of VisualItems and do the actual painting based upon this data. Different Ren-
derers and VisualItems can be combined in any way, which again supports flex-
ibility and reusability. prefuse provides Renderers for drawing various shapes,
labels, and images out of the box.

The Display class acts as a camera onto the contents of a Visualization.
The Display is responsible for drawing visible items (by using appropriate Ren-
derers) and can be panned, zoomed, and rotated as desired. Multiple Display
instances can be associated with a single Visualization, enabling multi-view
configurations, including Overview Plus Detail views.

The prefuse.controls package provides Controls that can be registered with
Display instances and be used to process mouse and keyboard actions performed
by the user. prefuse provides pre-built Controls for selecting items, dragging
items around, and panning, zooming, and rotating the Display. It’s easy to
write custom Control implementations by extending the ControlAdapter class.

Thanks to prefuse’s unified data structure, essentially based on the Tuple
and TupleSet interfaces, querying data and providing various interactive search
and filter facilities to the user is a snap. Most of the classes supporting data
queries can be found in the prefuse.data.query and prefuse.data.search packages.

3 TimeVis API
TimeVis provides a framework that enables Java developers to build applica-
tions to visualize any kind of temporal data without much effort. The central
element is the BasicTimeScale class, which handles the mapping between pix-
els on the screen and dates represented by this pixel. The AdvancedTimeScale
and FisheyeTimeScale classes respectively extend the functionality of the other
classes. All timescale implementations use the TimeUnitProvider for acquiring
their best-suited TimeUnit.

3.1 Timescales
The main responsibility of timescales is to provide a mapping between pixels
and dates. That is, to find a date for a given pixel and vice versa.

9

Figure 6: TimeVis core classes

BasicTimeScale provides the following methods to accomplish these tasks:
getDateAtPixel and getPixelForDate. The implementation is quite straightfor-
ward. BasicTimeScale maintains a start date and a number of milliseconds that
should be used per pixel. For example if the start date is exactly 8 March 2007,
00:00:00 7, getDateAtPixel(0) would return exactly this date, and getPixelFor-
Date with the start date as the input, would return 0, of course. What if you
want a date for a pixel other than the first one, like, say number 60? The re-
turned value of course depends on the number of milliseconds to use per pixel.
Suppose we have told BasicTimeScale to use 1000 milliseconds, which is one
second, per pixel. The returned date would be 8 March 2007, 00:01:00 - one
minute after the start date. The implementation, again, is easy: Take the start
date and add the number of milliseconds per pixel multiplied with the given
pixel, in this case 60.

At a glance, it seems that the mapping between pixel and date is 1 to 1, one
pixel for exactly one date. But if you look carefully, you’ll notice that in truth
every pixel represents an interval, a range of dates: the number of milliseconds
per pixel - not a single milliseconds. This is not a problem, as long as you
don’t need to correctly tell the user, which date is represented by a single pixel.
The user often needs a correct time, not a possible range of milliseconds. Let’s
look at the TimeViewer prototype (see page 13) as an example. Here, activities
that have an exactly defined start and end date, are visualized. Suppose a start
date of an activity is some day at 01:00:00 o clock and the start date of a
BasicTimeScale is on the same day at 00:00:01, nearly one hour earlier, but
not exactly. Now, suppose the number of milliseconds per pixel is 60000, one
minute. The start of our activity would be rendered at pixel 59 - as returned by
getPixelForDate - because this pixel represents the interval 00:59:01 to 01:00:01.

7Milliseconds in dates are always omitted in this thesis, except when it is useful for ex-
plaining a concept. Generally you can assumed that all units omitted are 0.

10

This is all right again, as long as you’re not going to ask the BasicTimeScale
for the date at pixel 59 and present it to the user. The user would certainly
be confused because the Activity all of a sudden would end at 00:59:01, which
would seem very weird.

To solve the problem mentioned above we need to adjust dates to avoid
confusing the user. But how and against what should the date be adjusted? It
certainly depends on the resolution8 of the timescale. If one pixel represents
exactly one minute, do we simply want to adjust dates to minutes, so that
00:59:01 becomes 01:00:00? Well, sometimes, but not necessarily always. We
would always have to ask the user how to adjust, and that would be cumbersome.
Another problem is, if one pixel for instance represents 128931273 milliseconds,
to what unit should be adjusted? Seconds, days, months? What are the units?
In some cases it could make sense to have units of 5 seconds or quartals.

3.2 Time Units
The idea behind time units is to (of course) not ask the user how to adjust dates,
but to tell the user how the dates are currently adjusted, or, more comprehen-
sible for the user, how accurate the current display is. The other aspect is to
let the developer define which time units are available9 and let the timescale
decide which time unit to use, depending on the current resolution, or zoom
level. In technical terms, the BasicTimeScale uses the TimeUnitProvider to get
a TimeUnit suiting the current resolution to tell the user about the accuracy of
the current display.

The easiest way to understand a TimeUnit is by looking at how it’s visu-
alized in the context of a timescale, as you can see in figure 7. A TimeUnit is
rendered using vertical lines. In the figure you can see two different TimeU-
nits. First the timescale’s current TimeUnit, which is represented by the thin
lines, and the next longer TimeUnit provided by the TimeUnitProvider, which
is represented by the thicker lines. You can see in the figure that the shorter
TimeUnit represents days, and the longer weeks.

By now we have defined what the TimeUnit is and what it’s used for. But
what are the responsibilities of the TimeUnit class? First, it can provide dates
that fit into it. For instance 8 March 2007, 00:00:00 fits into the time unit
days as well as into seconds or hours, but not into months. The 8 March
2007, 01:00:00 doesn’t fit into days or any unit greater than that but fits into
anything smaller than days. The 1 January 2007, 00:00:00 fits into virtually
every time unit, except decades. By providing these dates, the time unit can
be painted like the vertical lines in figure 7. Also, the timescale can use this
information to adjust the pixel-to-date mapping to the current time unit. The
getDateAtPixel method of the BasicTimeScale for example adjusts dates before
returning them, so that for pixels representing a date that fits into the current
TimeUnit this date that is returned and not any other date of the represented
interval. This adjustment ensures that the date 10.03.2007 00:00 displayed
in figure 7 represents exactly the date indicated by the vertical line, and not
09.03.2007 23:55, which could be represented by the same pixel and therefore

8The resolution is determined by the number of milliseconds per pixel. The smaller this
number, the higher the resolution.

9There is a default set of TimeUnits available, so the developer must not necessarily worry
about defining own TimeUnits.

11

Figure 7: Visualized timescale with a time unit of one day. This time unit is
rendered using the thin, gray vertical lines.

would not be wrong from a technical point of view but would certainly confuse
the user.

Another responsibility of the TimeUnit is, to provide DateFormats for for-
matting dates according to the accuracy of the unit. You can see in figure 7a
use of all 3 DateFormats provided:

• The short format is used by the TimeScaleHeader class to format dates
in the header area when space is short.

• The TimeScaleHeader also uses the long format to format dates when
there is more space.

• The MouseHandler class paints a vertical line at the current mouse posi-
tion and displays the date at this position, formatted with the full format.

As available time units are typically defined by the developer it is important
to note that a TimeUnit object must be based upon a unit provided by a field
of the Calendar class. So the TimeUnit cannot be of any length, but can only
be a multiple of the Calendar field it is based upon, like 5 seconds, 3 months,
or one hour. This is because finding a date fitting within a TimeUnit is not a
straightforward task and utilises functionalities of the Calendar class for which
the Calendar field of the TimeUnit is required. The fact that months and years
differ in length further complicates this process.

3.3 Using TimeVis
TimeVis has been designed to work in conjunction with Java Swing and prefuse.
However, the core classes (see figure 6) are completely independent of these
libraries and you can build your application using these classes, with any GUI
and visualization toolkit you like. However, there are a lot of classes in the
framework that are built to be used with prefuse or Java Swing, which makes
it preferable to use these toolkits:

• The RangeAdapter class simplifies the process of building overview-detail
views by implementing a Swing BoundedRangeModel that can be used by
the prefuse JRangeSlider class.

12

• The at.ac.tuwien.cs.timevis.actions package contains Swing Action classes
used to interact with various timescale implementations, the RangeAdapter
class, and prefuse Displays.

• The at.ac.tuwien.cs.timevis.ui package on the other hand provides Swing
components and classes like the StatusBar for displaying the start- and
end date and the current TimeUnit of a given AdvancedTimeScale, or the
TimeScaleHeader painting a header for a timescale.

• The at.ac.tuwien.cs.timevis.prefuse package and its sub-packages include
classes for laying out, rendering and interacting with temporal data.

There are also some demos and of course the TimeViewer prototype demon-
strating the use of some of these classes in the at.ac.tuwien.cs.timwvis.demos
package.

Although TimeVis is only used with prefuse at the time, it has been designed
to be independent of any library. That is why zooming, panning and distortion
using prefuse’s Display class is not supported by TimeVis and may lead to
unexpected results. For example the TimeLayout lays out temporal data along
the x-axis utilising the BasicTimeScale’s pixel-date mapping. This requires that
the Display ’s view coordinate system does not differ from the world coordinate
system for the x-axis, as this would corrupt the layout. Since TimeLayout does
not use the y-axis, it can be modified arbitrarily.

When using TimeVis, you have to decide which of the 3 timescale imple-
mentation to use, or even if it is feasible to write an own implementation based
on one of the provided timescales. The most basic timescale - BasicTimeScale
- is best suited for applications, where you have a single view on the data and
don’t need to know the interval of the timescale. If you want overview-detail
views with a Range Slider, you need to know the end date of the timescale
and therefore you have to use an AdvancedTimeScale. The AdvancedTimeScale
also features automatic calculation of it’s resolution, based on it’s interval an the
width used to display this interval. It’s also convenient if you want to adjust the
view when the user resizes the window. If you also need a fisheye distortion you
have no choice but use the FisheyeTimeScale, which inherits all features from
the AdvancedTimeScale and has facilities to adjust the distortion intensity.

4 TimeViewer Prototype
The TimeViewer prototype is a remake of the PlanViewer prototype, incorpo-
rating the TimeVis API and enhanced according to the requirements mentioned
in chapter 1.2. A few minor features of PlanViewer, like loading Asbru plans,
have been omitted in the current version of the prototype.

4.1 User Interface
The TimeViewer UI consists of four main parts (see figure 3):

• The overview in the bottom area, which displays the whole interval oc-
cupied by the loaded activities. It also incorporates a Range Slider control
used to modify the interval displayed by the detail view. It provides the
big picture.

13

• The detail view above the overview, which displays the part of the
overview, which is determined by the length and position of the Range
Slider component used in the overview.

• The status bar at the bottom, which displays the start and end date of
the detail view and it’s current accuracy.

• The toolbar at the top that provides components to interact with the
detail view. First, there are buttons to zoom and pan10 and a Slider
component to adjust the intensity of the fisheye distortion. Furthermore,
there is a search field for searching activities, which will be highlighted
when found.

Additionally, there is the menu bar , which is used to open and insert MS-
Project files and includes items that can also be found in the toolbar. Left of the
detail view, there is a Tree component, displaying the hierarchical composition
of the loaded schedule.

Most of the prototype’s functionality is evident, either based on TimeVis
(see chapter 3), GANTT charts or PlanningLines, there are however a few
aspects worth mentioning:

• As described earlier, the detail view can be adjusted by changing the
Range Slider provided by the overview. However, rarely schedules must
be displayed which include activities that greatly differ in length. There
could for example be an activity that lasts one month and consists of sub-
activities lasting only a couple of minutes. To display this short activity
accurately in the detail view you would have to reduce the length of the
Range Slider to a fraction of the available length. The problem is, that
the number of pixels of the available length limits this fraction. So, if you
have a window width of 800 pixels, you can “only” make the detail view
800 times more accurate than the overview because you can only change
the length of a Range Slider on a pixel-by-pixel base. For these rare cases,
the possibility to pan and zoom the overview - which of course affects the
detail view - has been included. Zooming can be achieved by pressing
the right mouse button on the background and dragging the mouse up or
down. Panning is accomplished by clicking on the background with the
left mouse button and then dragging the mouse. Note, that this type of
interaction is also possible with the detail view, but in turn only modifies
the Range Slider and therefore is limited to the interval displayed in the
overview.

• When typing into the search field, TimeViewer will highlight activities
whose name contains the typed string by dimming all other activities that
don’t match the given string. Furthermore, activities containing found
sub-activities are only a little dimmed to indicate that there are matching
activities beneath it.

• TimeViewer maintains the interval of the overview when the window is
resized, so that it never changes. As the detail view is dependent on

10Note that this is implemented by modifying the position and the size of the RangeSlider
incorporated by the overview.

14

the length of the Range Slider and it’s not reasonable to always adjust
this length, the detail view naturally changes when the window is resized,
which may seem odd to the user. However, the advantages are that the
overview always shows exactly the whole interval and the detail view al-
ways stays in sync with the Range Slider.

4.2 Implementation
TimeViewer was implemented with prefuse (see chapter 2.3) and TimeVis
(described in chapter 3) according to the principles of the InfoVis Pipeline men-
tioned in chapter 2.2. The TimeViewer core architecture with it’s relations to
the InfoVis Pipeline, prefuse and TimeVis are depicted in figure 8. The classes
in the figure are laid out from top to bottom, where classes at the top relate to
early steps in the InfoVis Pipeline, which naturally have a lot to do with data
loading and representation. The further down the classes are, the more they are
related to the user interface and therefore less to the data. The diagram has
been divided into parts, each relating to a part of the InfoVis Pipeline. Note
that the package structure is similar to the depicted parts. Classes belonging
to prefuse have a gray background color, TimeVis classes are magenta, and
TimeViewer classes blue.

The MSProjectReader class is used to read MS-Project files and transform
it into an ActivityGraph. The ActivityGraph is a directed prefuse Graph11 class
and exists of nodes that are of type Activity and edges of type ActivityRelation.
Instances of these two classes are managed in data tables the ActivityGraph and
therefore must extend the prefuse classes TableNode and TableEdge.

ActivityNode and ActivityEdge are the visual abstractions of Activity and
ActivityRelation, respectively. As defined by the InfoVis Pipeline they contain
visual information in addition to the raw data. They too extend prefuse classes
that are managed in data tables as well but also include support for visual
information.

The most central class in any prefuse architecture is the Visualization class;
in this case it’s an ActivityVisualization instance. A Visualization is responsible
for managing the mappings between source data and what is visualized on the
screen. It maintains Renderers and a list of Display instances responsible for
rendering of and interaction with the contents of the Visualization. It also
manages a set of Action instances used for performing visual data processing
such as position, size, and color assignment.

The ActivityVisualization is configured with an IntervalLayout used for lay-
ing out ActivityNodes along the x-axis and an ActivityLayout arranging Ac-
tivityNodes along the y-axis. It unsurprisingly uses an ActivityNodeRenderer
for rendering ActivityNodes and an ActivityEdgeRenderer for rendering Activi-
tyEdges.

The ActivityDisplay is a prefuse Display, which renders the contents of a
given ActivityVisualization and handles interaction with it.

11This class implements a mathematical graph data structure as defined in the graph theory.
See http://en.wikipedia.org/wiki/Graph_%28mathematics%29 (accessed on April 30th, 2007)
for a description.

15

Figure 8: The TimeViewer architecture, how it maps to the InfoVis Pipeline and
which prefuse and TimeVis classes are utilised.

5 Conclusions
In the course of this thesis I have developed TimeVis, an API for developing
applications that visualize temporal data. TimeVis has originated from the de-
velopment of the TimeViewer prototype, which is used to display time schedules
consisting of activities and sub-activities. Both outcomes of the thesis are used
in conjunction with Java Swing, Java 2D and prefuse.

5.1 On prefuse
prefuse is stated to be a toolkit for interactive information visualization and
one goal of the thesis was to validate this toolkit. Generally, prefuse is a well
structured and documented and it was quite easy to build the TimeViewer
prototype using this library. However, it is still in beta phase and nothing has
changed since one year. Additionally the prefuse manual still is a stub and
therefore a developer needs to dig deep into the source code to fully understand

16

it, which means the learning curve is quite steep. The great strength of prefuse is
its flexibility. You can combine actions, layouts, animators, renderers, displays
etc. in any way and it’s possible to get great results very quickly. But in the
case of TimeViewer, where it’s very important to exactly layout activities -
every pixel counts - the strengths of prefuse suddenly vanish. It seems that
pixel-perfect layout just isn’t supported and prefuse really doesn’t seem to be
built for such uses. Also the advantage of flexibility cannot be exploited by
applications like TimeViewer, as one doesn’t need to experiment a lot with
different forms of visualizations and interactions and one form of visualization,
once established, stays very stable over time, which means that the flexibility
provided by prefuse really isn’t needed. Therefore I think the effort to learn
prefuse easily compensated the advantages it brought and I still think that
by just using Java Swing and Java2D the effort would have been about the
same and the result just as well. One annoying thing was that prefuse classes
are quite hard to extend and customize, especially the Visualization class and
classes concerning data tables like Tuple implementations. For example derived
properties are not supported by TableTuples and therefore must be saved and
kept up to date instead of just be calculated from other fields. An example is
the real start in the Activity class, which is derived from the earliest- and latest
start. I’m a fan of simple, plain old java objects12 and promote its use wherever
possible. prefuse on the other side is uses data tables, which means that data is
not stored in objects, but in tables like in a relational database. The drawbacks
of this are that prefuse can only work with it’s own custom data structure and
no behaviour can be implemented in the data objects. I think the use of these
custom data structures is very cumbersome and it would have been better and
easier if prefuse would be based on plain java objects. It is advocated that this
data structure is so great because querying this data is so easy, efficient and
generic. I believe that it makes no sense to build a proprietary data structure
to mimic a relational database and I also think that querying plain objects can
be easy, efficient and generic as well, for instance by using Java Reflection, and
could save a lot of compatibility problems and learning effort. To summarize,
prefuse is great for simple and fancy visualizations, but to be really useful for
more complex, more specialized applications like TimeViewer it needs a better
documentation and a better data structure, which is easier to learn, extend and
customize.

5.2 On TimeVis
As prefuse is not considered an optimal toolkit for visualizing temporal data,
TimeVis has been designed to be independent of it. It’s pretty easy to build
applications using TimeVis, but at the time it’s quite hard to customize. Per-
haps it should be easier to extend and customize timescale implementations.
To achieve this, the proven principle of favoring composition over inheritance13
should be applied to the TimeVis core classes to better support extensions and
customizations. A possible structure for future versions of TimeVis is proposed
in figure 9.

In future versions of TimeVis it should be possible to configure time units
and it’s date formats in a configuration file. Therefore the TimeUnitProvider

12http://en.wikipedia.org/wiki/Plain_Old_Java_Object (accessed on April 30th, 2007)
13see Item 14 in [4].

17

Figure 9: Proposed TimeVis core architecture for possible future versions

class is intended to be sub-classed, and it should be quite easy to write a XML-
TimeUnitProvider which can be configured via a XML file and can be associated
with a timescale.

5.3 On TimeViewer
TimeViewer is a great example of how to use TimeVis and prefuse to build a
powerful application. It was built to verify prefuse and demonstrate the use of
PlanningLines, which it does very well too. However, it is only a prototype and
has its glitches and there are naturally a lot of things that could be improved:

• As mentioned in chapter 4, zooming and panning the detail view is per-
formed through manipulating the Range Slider of the overview. When
the detail view is much smaller than the overview, zooming and panning
is very rough. This could be improved by changing the interval of the
detail view instead of changing the Range Slider when panning and zoom-
ing. Then the Range Slider can keep track of the current interval and
manage to stay in sync with it. Panning and zooming would then always
be smooth, independent of the current intervals.

• When searching activities, the detail view could automatically focus on the
area containing all found activities, if some found activities are outside the
currently visible area. It is also possible to automatically expand parent
activities of found sub-activities.

• The overview could better highlight the interval that is currently being
displayed in the detail view.

• The item state of activities displayed in the overview and the detail could
be synchronized. For example, when expanding a parent activity in the
detail view it could be expanded in the overview as well.

• The prototype has a fairly bad performance as this is a prototype and
performance has never been considered important during development.

18

Optimization should be fairly easy though, but it may be hard to profile
the application and to find bottlenecks.

• Occasional hangs occur when zooming, resizing the window, or changing
the fisheye intensity. The error seems to be somewhere in the painting
code. Again this seems to be easy to fix but hard to find, especially
because the hang-up is hard to reproduce.

19

References
[1] prefuse user’s manual, May 2006.

[2] Wolfgang Aigner, Silvia Miksch, Bettina Thurnher, and Stefan Biffl. Plan-
ninglines: Novel glyphs for representing temporal uncertainties and their
evaluation. Technical report, Institute of Software Technology & Interactive
Systems, Vienna University of Technology, 2005.

[3] Wolgang Aigner. Interactive visualization of time-oriented treatment plans
and patient data. Master’s thesis, Vienna University of Technology, 2003.

[4] Joshua Bloch. Effective Java Programming Language Guide. Prentice Hall
PTR, 2001.

[5] Andreas Fellner. Treating temporal uncertainties of complex hierarchical
data visually. Master’s thesis, Vienna University of Technology, 2006.

[6] Jenifer Tidwell. Designing Interfaces. O’Reilly Media, 2005.

20

