

FF

Funding: Austrian Research Promotion Agency (FFG) Project number: 814316

Visually Exploring Multivariate Trends in Patient Cohorts using Animated Scatter Plots

<u>Alexander Rind</u>, Wolfgang Aigner, Silvia Miksch, Barbara Neubauer

Dept. Information and Knowledge Engineering Danube University Krems

Information Engineering Group Vienna University of Technology

Sylvia Wiltner, Margit Pohl, Nik Suchy

Human Computer Interaction Group Vienna University of Technology

Felix Drexler, MD

Landesklinikum Krems

http://ieg.ifs.tuwien.ac.at/projects/timerider/

Patient data sets are large and have many variables

For long-term diabetes care we need to explore multivariate trends in cohorts

diabetes out-patient clinic

check up examinations

10 quantitative variables

+ more data on therapy

development over many years

esp. co-development of variables

~ 35 patients in the cohort

Scatter plot is a popular method to explore relationships between 2 variables

But how can we explore development over time?

mapping

time to space vs. time to time

TimeRider based on Animated Scatter Plot

contradictory views on animation in visualization in prior research

Patient cohorts pose additional challenges for animated scatter plots

Data sets covering different portions of time

Demonstration of TimeRider

User study with 10 physicians

Research questions

- 1) Does animation, specifically in TimeRider, support physicians in getting insights from time-dependent data?
- 2) Is the mapping (e.g., color, traces) we developed appropriate for the task?
- 3) Are there any general usability/utility problems that might also occur in similar systems?

Methods

Thinking Aloud + Screen Capture

coding usability problems with Forsell & Johannssen's heuristics for usability in Information Visualization

4 tasks invited participants to explore the data at will and experiment with the prototype.

e.g., Task 3

Parameters: x-axis: NBZ y-axis: RR diast [mmHG]

Limit the data set to NBZ \leq 100; RR diast. \leq 80. Choose a setting that gives a good overview over the trends of the patients.

Which patients show a favorable trend? What is the general trend of the group?

Experiment at will.

Describe your findings.

Results

- All participants required (hands-on) learning to get familiar.
- Solve tasks: All participants successful
- Predict trends: All participants (hesitantly) successful
- Usability problems: 50+
 - most frequent heuristic: "information coding/mapping"
 - e.g., order of variables in dropdown lists
 - e.g., participants did not understand how to use range sliders

Body Mass Index

Ŧ

103.0

130.0

256.0

- e.g., cluttering from overlapping marks/traces
- \rightarrow many problems fixed in the next iteration

•

256.0

Conclusions on TimeRider

improved Animated Scatter Plot

http://ieg.ifs.tuwien.ac.at/research/timerider/

3 challenges posed by patient cohorts

irregular sampling

data wear

data sets covering different portions of time

User study with 10 physicians

usage – learnable

tasks – solvable

→ evidence for effectiveness of animation in visualization

